[BZOJ4553][HEOI2016/TJOI2016]序列

传送门

好像是DP再套个裸的CDQ?
树套树是不可能写树套树的,这辈子都不可能写树套树的

对于一个 \(i\) ,设它最小为 \(a_i\) ,原数为 \(b_i\) ,最大为 \(c_i\)

\(f_i\) 表示 \(i\) 结尾的最长子序列, \(f_i=f_j+1\)\(j\) 要满足

  • \(j<i\)
  • \(c_j \leq b_i\)
  • \(b_j \leq a_i\)

这不就CDQ套个树状数组就完了嘛QAQ

具体的话,把 \([L,mid]\)\(c\) 排序,\([mid+1,r]\)\(b\) 排序,然后像求三维偏序一样套个树状数组就行了。
处理区间的顺序可能要注意下,树状数组的清空也要控制好复杂度。

然后交了一发就过了0.0

#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=100005;
const int M=N<<1;
int n,m,a[N],b[N],c[N];
int f[N];
int mx=100000;
int num[N],t[N];

void read(int &x){
    char ch=getchar();x=0;
    for(;ch<'0'||ch>'9';ch=getchar());
    for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
}

void chkmin(int &x,int y){ if (y<x) x=y; }
void chkmax(int &x,int y){ if (y>x) x=y; }

inline int cmpc(const int &q,const int &w){ return c[q]<c[w]; }
inline int cmpb(const int &q,const int &w){ return b[q]<b[w]; }

inline void ADD(int x,int v){
    for(;x<=mx;x+=x&(-x)) chkmax(t[x],v);
}

inline int QRY(int x){
    int ans=0;
    for(;x;x^=x&(-x)) chkmax(ans,t[x]);
    return ans;
}

inline void DEL(int x){
    for(;x<=mx;x+=x&(-x)) t[x]=0;
}

void solve(int L,int r){
    if (L==r){
        chkmax(f[L],1);
        return;
    }
    int mid=(L+r)>>1;
    solve(L,mid);
    fr(i,L,r) num[i]=i;
    sort(num+L,num+mid+1,cmpc);
    sort(num+mid+1,num+r+1,cmpb);
    int pp1=L,pp2=mid+1;
    while(pp1<=mid&&pp2<=r){
        int p1=num[pp1],p2=num[pp2];
        if (c[p1]<=b[p2]){
            ADD(b[p1],f[p1]);
            pp1++;
        } else{
            chkmax(f[p2],QRY(a[p2])+1);
            pp2++;
        }
    }
    for(;pp2<=r;pp2++) chkmax(f[num[pp2]],QRY(a[num[pp2]])+1);
    fr(i,L,mid) DEL(b[num[i]]);
    solve(mid+1,r);
}

int main(){
    read(n);read(m);
    fr(i,1,n) read(a[i]),b[i]=c[i]=a[i];
    int x,y;
    fr(i,1,m){
        read(x);read(y);
        chkmin(a[x],y);
        chkmax(c[x],y);
    }
    solve(1,n);
    int ans=0;
    fr(i,1,n) chkmax(ans,f[i]);
    cout<<ans<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/ymzqwq/p/11278980.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值