AtCoder Grand Contest 036 A-C

AGC这么hard的嘛,从A就开始卡题,然后只会AB。。

\(\bf A - Triangle\)

\(\bf Description\):在坐标系中找三个整点,使其构成三角形面积为 \(S/2\)\(1 ≤ S ≤ 10^{18}\)\(0 \leq X,Y \leq 10^9\)

\(\bf Solution\):我也不知道怎么说??设三个点分别在 \((a,0) , (0,b) , (x,y)\),且不妨设 \(a \leq x,b\leq y\),那么可得 \(S=2xy-ab-(x-a)y-x(y-b)\) ,整理可得 \(xy-S=(x-a)(y-b)\)

为了让 \(x,y,a,b \leq 10^9\) ,我们可以这么搞,找一对 \(x,y\) 使左边 \(\leq 10^9\),右边的话,直接 \(x-a=1\), \(y-b=xy-S\),然后 \(x,y\) 找两个接近 \(\sqrt S\) 的整数就过了。。

(其实可能还要证一下这样构造会满足 \(y \leq xy-S\) ,但是因为太懒就省略了。。)

好像和官方题解不太一样,好像官方题解会真一点。。

#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=1002;
LL S;

void read(LL &x){ scanf("%lld",&x); }

int main(){
    read(S);
    LL x=sqrt(S)+0.0001,y=S/x;
    if (x*y<S) x++;
    LL v=x*y-S;
    LL a=x-1,b=y-v;
    printf("%lld %lld %lld %lld %lld %lld\n",a,0,0,b,x,y);
    return 0;
}

\(\bf B - Do\ Not\ Duplicate\)

\(\bf Description\):给一个长度为 \(N\) 的数列 \(A\) ,将 \(A\) 重复 \(K\) 次得到数列 \(X\) ,将 \(X\) 中的数依次加入 \(s\) 中,规则是这样的:

  • 如果 \(s\) 中没有 \(X_i\) 这个数,将 \(X_i\) 加到末尾
  • 如果有,从末尾一直删除,直到数列中没有 \(X_i\) (不再加入)

求数列 \(s\)

\(\bf Solution\):为什么感觉AGC的题解好难写,一种说不清的感觉。。这题的话,我们关心一下每次数列被清空是啥时候,如果这次在加入 \(A_i\) 的时候是空的,那么 \(s\) 第一个数就变成了 \(A_{i}\) ,那下次清空就是再次出现 \(A_i\) 的时候,设为 \(A_j\) ,那么接下去 s 的第一个数就变成了 \(A_{j+1}\) 。于是,我们从 \(i\)\(j+1\) 连一条边。沿着边走就会出现环,相当于有循环节,把循环节从 \(N \times K\) 里去掉,剩下的暴力就行。

具体可能还是要看代码实现,但是我代码很丑呢。。

#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=200002;
int n,a[N];
int b[N];
int h[N],w;
int to[N];
LL K;

void read(int &x){ scanf("%d",&x); }
void read(LL &x){ scanf("%lld",&x); }

void gooo(int p,int s){ //暴力按题意加入数字
    memset(b,0,sizeof b);
    fr(i,1,s){
        if (!b[a[p]]) h[++w]=a[p],b[a[p]]=1;
         else{
            while(h[w]!=a[p]) b[h[w]]=0,w--;
            b[h[w]]=0;w--;
          }
        p=p%n+1;
    }
    fr(i,1,w) printf("%d ",h[i]);
}

void goo(int p,LL s){ //暴力跳到最后一次清空
    while(to[p]-p+1<=s){
        s-=to[p]-p+1;
        p=to[p]%n+1;
    }
    gooo(p,s);
}

int main(){
    read(n);read(K);
    fr(i,1,n) read(a[i]);
    rf(i,n,1) b[a[i]]=i+n;
    rf(i,n,1) to[i]=b[a[i]],b[a[i]]=i;
    memset(b,0,sizeof b);
    int p=1;LL s=0,sc=0; //s表示从1走完循环节的总次数,sc表示循环节上的总次数
    while(!b[p]){
        b[p]=1;
        s+=to[p]-p+1;
        p=to[p]%n+1;
    }
    int q=p;
    while(1){
        sc+=to[q]-q+1;
        q=to[q]%n+1;
        if (q==p) break;
    }
    if (n*K<=s) goo(1,n*K);
     else goo(p,(n*K-s)%sc);
    return 0;
}

\(\bf C - GP 2\)

\(\bf Description\):一个长度为 \(n\) 的数列初始都为 \(0\) 。一次操作可以选择两个不同的位置,一个 \(+1\) ,一个 \(+2\) ,问 \(M\) 次操作后形成的数列有多少种可能,模 \(998244353\)

\(\bf Solution\):可以发现最后形成数列是合法的充要条件如下

  • \(\sum_{i=1}^n x_i=3M\)
  • \(max\{x_1,x_2,\cdots,x_n\} \leq 2M\)
  • \(\sum_{i=1}^n [x_i \ mod \ 2=1] \leq M\)

不证了,感性理解下= =这个结论我倒是发现了,但是不知道是不是因为太久没做TC,数数水平下降到哪里去都不知道了QAQ。

先不考虑第二个条件emmm。。然后我们可以枚举有几个奇数,总数就是 \[\sum_{i=1}^M {n \choose i} \cdot {(3M-i)/2+n-1 \choose n-1}\]

考虑把不满足第二个条件的答案踢出去。注意到大于 \(2M\) 的数最多只有一个,把它减去 \(2M\) 后,问题就转化为求下面这个数列的数量(不妨设这个大于 \(2M\) 的数为 \(x_1\) ,最后要乘 \(n\)

  • \(\sum_{i=1}^n x_i=M\)
  • \(\sum_{i=1}^n [x_i \ mod \ 2=1] \leq M\)
  • \(x_1>0\)

如果无视第三个条件的话,好像和上面求法差不多呢0_0

然后考虑怎么把不符合第三个条件的踢出去。那样的话 \(x_1=0\),问题又转化了:

  • \(\sum_{i=2}^n x_i=M\)
  • \(\sum_{i=2}^n [x_i \ mod \ 2=1] \leq M\)

还是一样的求法呢。。

贴代码

#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=3000002;
const int p=998244353;
int n,m;
LL mul[N],inv[N];
LL ans;

void read(int &x){ scanf("%d",&x); }
void read(LL &x){ scanf("%lld",&x); }

LL qpow(LL a,int n){
    LL ans=1;
    for(LL sum=a;n;n>>=1,sum=sum*sum%p) if (n&1) ans=ans*sum%p;
    return ans;
}

void init(){
    mul[0]=1;
    frl(i,1,N) mul[i]=mul[i-1]*i%p;
    inv[N-1]=qpow(mul[N-1],p-2);
    rf(i,N-2,0) inv[i]=inv[i+1]*(i+1)%p;
}

LL C(int n,int m){
    if (n<0||m<0||n-m<0) return 0;
    return mul[n]*inv[m]%p*inv[n-m]%p;
}

void Add(LL &x,LL y){
    x+=y;
    while(x<0) x+=p;
    while(x>=p) x-=p;
}

int main(){
    read(n);read(m);
    init();
    fr(i,0,m)
     if ((3*m-i)%2==0) Add(ans,C(n,i)*C((3*m-i)/2+n-1,n-1)%p);
    fr(i,0,m)
     if ((m-i)%2==0) Add(ans,-C(n,i)*C((m-i)/2+n-1,n-1)%p*n%p);
    fr(i,0,m)
     if ((m-i)%2==0) Add(ans,C(n-1,i)*C((m-i)/2+n-2,n-2)%p*n%p);
    cout<<ans<<endl;
    return 0;
}

\(\bf D - Negative \ Cycle\)

传送门


后面的,可能也不太懂,先咕咕咕。。

转载于:https://www.cnblogs.com/ymzqwq/p/agc036.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值