洛谷 P3327 【[SDOI2015]约数个数和】

前置芝士

关于这个题,你必须知道一个这样奇奇怪怪的式子啊QAQ

\[d(i*j)= \sum_{x|i} \sum_{y|j}[gcd(x,y)=1] \]

留坑,先感性理解:后面那个gcd是为了去重。

UPD:
5c7fb12fd9952.png
--------

正文

根据前一部分,我们所要推倒的式子就变成了

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\left [ gcd(x,y)=1 \right ]\]

我们可以改变一下枚举顺序,原来是枚举原数,现在我们改为枚举约数,再利用数学性质将其倍数全部筛掉,式子即变成

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{j} \right \rfloor\left [ gcd(i,j)=1 \right ]\]

于是,我们可以把里面的那个东西稍稍的替换一下

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{j} \right \rfloor\sum_{d|gcd(i,j)}\mu (d)\]

根据莫比乌斯函数的性质,这两个东西显然是等价的。

然后我们可以在和式枚举时就将gcd消掉,同时将d调整到和式最外层

然后整个式子就变成

\[ans=\sum_{d=1}^{min(n,m)}\mu (d)\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor\sum_{y=1}^{\left \lfloor \frac{m}{y} \right \rfloor}\left \lfloor \frac{m}{dy} \right \rfloor\]

唯一的难点是,$\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor $

\(n/x\),换成一个变量,就会发现,这东西也是可以分块的!!!

然后就可以愉快的整除分块了

贴代码

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5e4+10;
int miu[maxn],prime[maxn],t;
bool vis[maxn];
ll g[maxn];
void get_g()
{
    for(int i=1;i<=maxn;++i)
    {
        int l,r;
        for(l=1;l<=i;l=r+1)
        {
            r=i/(i/l);
            g[i]+=(i/l)*(r-l+1);
        }
    }
}//同样分块处理 
void mobius()
{
    miu[1]=1;
    for(int i=2;i<=maxn;i++)
    {
        if(vis[i]==0)
            miu[i]=-1,++t,prime[t]=i;
        for(int j=1;j<=t&&i*prime[j]<=maxn;++j)
        {
            vis[i*prime[j]]=1;
            if(!(i%prime[j])) break;
            else miu[i*prime[j]]-=miu[i];
        }
    }
    for(int i=1;i<=maxn;++i)
        miu[i]+=miu[i-1];
}
int main()
{
    get_g();
    mobius();
    int t;
    int n,m;
    scanf("%d",&t);
    for(int _=1;_<=t;++_)
    {
        ll ans=0;
        scanf("%d%d",&n,&m);
        int tmp=min(n,m);
        long long l,r;
        for(l=1;l<=tmp;l=r+1)
        {
            r=min(n/(n/l),m/(m/l));
            ans+=(miu[r]-miu[l-1])*g[n/l]*g[m/l];
        }
        printf("%lld\n",ans);
    }
}

转载于:https://www.cnblogs.com/HenryHuang-Never-Settle/p/10484930.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值