洛谷P3327:[SDOI2015]约数个数和(莫比乌斯反演)

枚举倍数的一种灵活的变形: g ( d ) = ∑ d ∣ i n f ( i ) = ∑ i = 1 ⌊ n d ⌋ f ( i ⋅ d ) g(d)=\sum_{d|i}^nf(i)=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i\cdot d) g(d)=dinf(i)=i=1dnf(id)
很显然,但有时能发挥大作用。
其实本质还是要理解西格玛究竟是在算什么

解析

一个重要的前置结论:
d ( i ⋅ j ) = ∑ x ∣ i , y ∣ j [ gcd ⁡ ( x , y ) = 1 ] d(i\cdot j)=\sum_{x|i,y|j}[\gcd(x,y)=1] d(ij)=xi,yj[gcd(x,y)=1]
证明:
尝试把所有互质的数对 ( x , y ) (x,y) (x,y) i ⋅ j i\cdot j ij 的所有因子建立双射关系。首先,对于只有 i , j i,j i,j 一方有的质因子,直接归给有该项质因子的那一方对应的 x x x y y y。对于双方都有的质因子 p p p,若 i i i 的对应次数为 a a a j j j 的对应次数为 b b b,如果 i ⋅ j i\cdot j ij 的某个因子 p p p 的次数 c c c 满足 c ≤ a c\le a ca,就当成 x x x 含有 p c p^c pc 的因子;若 c > a c>a c>a,就当成 y y y 含有 p c − a p^{c-a} pca 次方的因子。这样我们就建立起了双射关系,且所有的 x , y x,y x,y 都是互质的,证毕。

我们再化一下这个 d d d 函数:
d ( i , j ) = ∑ x ∣ i ∑ y ∣ j [ gcd ⁡ ( i , j ) = 1 ] = ∑ x ∣ i ∑ y ∣ j ∑ k ∣ gcd ⁡ ( x , y ) μ ( k ) = ∑ k ∣ i , k ∣ j μ ( k ) ∑ k ∣ x , x ∣ i ∑ k ∣ y , y ∣ j 1 = ∑ k ∣ i , k ∣ j μ ( k ) ∑ x ∣ i k i k ∑ y ∣ j k j k 1 = ∑ k ∣ i , k ∣ j μ ( k ) d ( i k ) d ( j k ) d(i,j)=\sum_{x|i}\sum_{y|j}[\gcd(i,j)=1]\\=\sum_{x|i}\sum_{y|j}\sum_{k|\gcd(x,y)}\mu(k)\\=\sum_{k|i,k|j}\mu(k)\sum_{k|x,x|i}\sum_{k|y,y|j}1\\=\sum_{k|i,k|j}\mu(k)\sum_{x|\frac{i}{k}}^{\frac{i}{k}}\sum_{y|\frac{j}{k}}^{\frac{j}{k}}1\\=\sum_{k|i,k|j}\mu(k)d(\frac{i}{k})d(\frac{j}{k}) d(i,j)=xiyj[gcd(i,j)=1]=xiyjkgcd(x,y)μ(k)=ki,kjμ(k)kx,xiky,yj1=ki,kjμ(k)xkikiykjkj1=ki,kjμ(k)d(ki)d(kj)
带回原式:
∑ i = 1 n ∑ j = 1 m d ( i j ) = ∑ i = 1 n ∑ j = 1 m ∑ k ∣ i , k ∣ j μ ( k ) d ( i k ) d ( j k ) = ∑ k μ ( k ) ∑ k ∣ i n ∑ k ∣ j m d ( i k ) d ( j k ) = ∑ k μ ( k ) ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ d ( i ) d ( j ) = ∑ k μ ( k ) ( ∑ i = 1 ⌊ n k ⌋ d ( i ) ) ⋅ ( ∑ j = 1 ⌊ m k ⌋ d ( j ) ) \sum_{i=1}^n\sum_{j=1}^md(ij)=\sum_{i=1}^n\sum_{j=1}^m\sum_{k|i,k|j}\mu(k)d(\frac{i}{k})d(\frac{j}{k})\\=\sum_{k}\mu(k)\sum_{k|i}^n\sum_{k|j}^md(\frac i k)d(\frac j k)\\=\sum_k\mu(k)\sum_{i=1}^{\lfloor\frac n k\rfloor}\sum_{j=1}^{\lfloor\frac m k\rfloor}d(i)d(j)\\=\sum_k\mu(k)(\sum_{i=1}^{\lfloor\frac n k\rfloor}d(i))\cdot(\sum_{j=1}^{\lfloor\frac m k\rfloor}d(j)) i=1nj=1md(ij)=i=1nj=1mki,kjμ(k)d(ki)d(kj)=kμ(k)kinkjmd(ki)d(kj)=kμ(k)i=1knj=1kmd(i)d(j)=kμ(k)(i=1knd(i))(j=1kmd(j))
线性筛出 μ , d \mu,d μ,d,预处理出前缀和,整除分块即可。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
inline ll read(){
	ll x(0),f(1);char c=getchar();
	while(!isdigit(c)) {if(c=='-')f=-1;c=getchar();}
	while(isdigit(c)) {x=(x<<1)+(x<<3)+c-'0';c=getchar();}
	return x*f;
}
const int N=1e5+100;
int n,m;

int p[N],tot,vis[N],mu[N],msum[N],d[N];
ll dsum[N];
void init(int n){
	mu[1]=1;d[1]=1;
	for(int i=2;i<=n;i++){
		if(!vis[i]) p[++tot]=i,mu[i]=-1,d[i]=2;
		for(int j=1;j<=tot&&p[j]<=n/i;j++){
			vis[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				d[i*p[j]]=d[i]+d[i]-d[i/p[j]];
				break;
			}
			mu[i*p[j]]=-mu[i];
			d[i*p[j]]=d[i]*2;
		}
	}
	for(int i=1;i<=n;i++){
		msum[i]=msum[i-1]+mu[i];
		dsum[i]=dsum[i-1]+d[i];
	}
	return;
}

signed main() {
#ifndef ONLINE_JUDGE
	//freopen("a.in","r",stdin);
	//freopen("a.out","w",stdout);
#endif
	init(5e4);
	int T=read();
	while(T--){
		n=read();m=read();
		ll ans(0);
		for(int l=1,r;l<=min(n,m);l=r+1){
			r=min(n/(n/l),m/(m/l));
			ans+=(msum[r]-msum[l-1])*dsum[n/l]*dsum[m/l];
		}
		printf("%lld\n",ans);
	}
	return 0;
}
/*
5
5
8
1
46
3564
*/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值