Logistic Regression - Formula Deduction

Sigmoid Function

\[ \sigma(z)=\frac{1}{1+e^{(-z)}} \]

feature:
  1. axial symmetry:
    \[ \sigma(z)+ \sigma(-z)=1 \]
  2. gradient:
    \[ \frac{\partial\sigma(z)}{\partial z} = \sigma(z)[1-\sigma(z)] \]
    由性质1 可知,
    \[ \frac{\partial\sigma(z)}{\partial z} = \sigma(z) \sigma(-z) \]

Logistic Function

\[ \sigma(x;\theta)= \frac{1}{1+e^{-\theta x}} \]

首先我们考虑 \(2\) 分类问题, 所以\(f(x)\)的值域也是 \([-1,1]\)
\[ P(y=1|x,\theta) = \sigma(x) \]

即对于给定的样本\(x\),其属于类别 \(1\) 的概率是 \(f(x)\)。则属于类别 \(-1\) 的概率是
\[P(y=-1 | x,\theta) = 1-\sigma(x)= \sigma(-x)\]

上述概率也可以写作:
\[P(y | x,\theta) = \left\{\begin{split}\sigma(x),~~~~y=1 \\ \sigma(-x),y=-1 \end{split}\right.\]

代价函数的形式是:
\[\mathcal{l}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \sigma(y_i x_i) \]

Note

  1. 之所以记 \(y\in [-1,1]\) 而不是 \(y \in [0,1]\),因为前者能简化计算公式,不需要再做分类计算了。
  2. 如果采用 \(y \in [0,1]\), 那么我们的代价函数就变成了:
    \[ \mathcal{l}(\theta) = \frac{1}{n} \sum_{i=1}^{n} y_i \log \sigma(x_i) + (1-y_i) \log (1-\sigma(x_i)) \]
    详情请参见: [Logistic Regression分类器](http://www.cnblogs.com/guyj/p/3800519.html

转载于:https://www.cnblogs.com/ZJUT-jiangnan/p/5489350.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值