[leetcode] 207. Course Schedule

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

Hints:

  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  3. Topological sort could also be done via BFS.

解法一:

BFS 实现topological sort。

class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<vector<int>> graph(numCourses, vector<int>(0));
        vector<int> in_degree(numCourses,0);
        
        // initilize in-degree
        for(auto a:prerequisites){
            graph[a.second].push_back(a.first);
            in_degree[a.first]++;
        }
        
        queue<int> q;
        for(int i=0; i<numCourses;i++){
            if(in_degree[i]==0) q.push(i);
        }
        
        while(!q.empty()){
            int k = q.front();
            q.pop();
            for(auto a:graph[k]){
                in_degree[a]--;
                if(in_degree[a]==0) q.push(a);
            }
        }
        
        for(int i=0; i<numCourses; i++){
            if(in_degree[i]!=0) return false;
        }
        return true;
    }
};

解法二:

class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<vector<int> > graph(numCourses, vector<int>(0));
        vector<int> visit(numCourses, 0); 
        // visit: 0 has not been visited
        //        1 has been visited
        //       -1 is being visited in current flow
        
        for(auto a:prerequisites){
            graph[a.second].push_back(a.first);
        }
        
        for(int i=0; i<numCourses; i++){
            if(!canFinish(graph, visit, i)) return false;
        }

        return true;
    }
    
    bool canFinish(vector<vector<int> >& graph, vector<int>& visit, int k){
        if (visit[k]==-1) return false;
        if (visit[k]==1) return true;
        
        visit[k]=-1;
        for(auto a:graph[k]){
            if(!canFinish(graph, visit, a)) return false;
        }
        
        visit[k] = 1;
        return true;
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值