There are a total of n courses you have to take, labeled from 0
to n - 1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
Hints:
- This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
- Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
- Topological sort could also be done via BFS.
解法一:
BFS 实现topological sort。
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>(0));
vector<int> in_degree(numCourses,0);
// initilize in-degree
for(auto a:prerequisites){
graph[a.second].push_back(a.first);
in_degree[a.first]++;
}
queue<int> q;
for(int i=0; i<numCourses;i++){
if(in_degree[i]==0) q.push(i);
}
while(!q.empty()){
int k = q.front();
q.pop();
for(auto a:graph[k]){
in_degree[a]--;
if(in_degree[a]==0) q.push(a);
}
}
for(int i=0; i<numCourses; i++){
if(in_degree[i]!=0) return false;
}
return true;
}
};
解法二:
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<vector<int> > graph(numCourses, vector<int>(0));
vector<int> visit(numCourses, 0);
// visit: 0 has not been visited
// 1 has been visited
// -1 is being visited in current flow
for(auto a:prerequisites){
graph[a.second].push_back(a.first);
}
for(int i=0; i<numCourses; i++){
if(!canFinish(graph, visit, i)) return false;
}
return true;
}
bool canFinish(vector<vector<int> >& graph, vector<int>& visit, int k){
if (visit[k]==-1) return false;
if (visit[k]==1) return true;
visit[k]=-1;
for(auto a:graph[k]){
if(!canFinish(graph, visit, a)) return false;
}
visit[k] = 1;
return true;
}
};