组合数学-01鸽巢原理

定理1 若有n+1只鸽子飞回n个鸽巢,则至少有两只鸽子飞入了同一个鸽巢.

这个原理的证明非常容易, 只要使用反证法马上就可以得到结论.
这个原理也可以表述为:

       如果把n+1件东西放入n个盒子中, 则至少有一个盒子里面有不少于两件的东西.

鸽巢原理不能用来寻找究竟是哪个盒子含有两件或更多件东西.
该原理只能证明某种安排或某种现象存在,而并未指出怎样构造这种安排或怎样寻找这种现象出现的场合.
从鸽巢原理出发, 对于许多实际问题, 我们可以导出非常有趣的结果.
利用鸽巢原理解决实际问题的关键是要看出这是一个鸽巢问题, 建立“鸽巢”,寻找“鸽子”.
利用鸽巢原理解决问题的关键在于:   辨认问题 , 建立鸽巢 , 寻找鸽子 .

一般形式鸽巢原理

定理2m1,m2,,,,Mn均为正整数,如果有m1+m2+,,,+Mn-n+1只鸽子飞回n个鸽巢,则或者第1个鸽巢至少有m1只鸽子,或者第2个鸽巢至少有m2只鸽子或者第n个鸽巢至少有Mn只鸽子. 

证明  用反证法. 假若第1鸽巢少于m1只鸽子, 第2鸽巢少于m2个鸽子, …, 第n鸽巢少于Mn只鸽子, 则鸽子总数至多为:

  (m1-1)+(m2-1)+…+(Mn-1) =m1+m2+…+Mn-n,

这比假定的鸽子数少了一个,矛盾.

从定理2可得出以下推论:

推论1  如果m1=m2=,,,=Mn=r, 若将n(r-1)+1个球放入n个盒子中,则至少有一个盒子含有不少于r个球.

推论2  如果n个正整数m1,m2,,,,Mn的平均数(m1+m2+,,,+Mn)/n>r-1,则m1,m2,,,,Mn中至少有一个正整数不会小于r.

推论3  有m个球放入n个盒子,则至少有一个盒子中有不少于[(m-1)/n]+1个球.

定理3(Erdös)n*n+1个不同实数构成的序列中,至少存在由n+1个实数组成一个单调递增子序列单调递减子序列.


Ramsey

在引出 Ramsey数之前,先给出几个引理.

引理1若集合S6个人组成,那么S中或者存在至少3个人互相认识,或者存在至少3个人互不认识.

证明:6个人中,任意固定一个人A,则其余的5人可以分成两部分,一部分是由与A认识的人组成的F,另外一部分是由与A不认识的人组成的T,由鸽巢原理,这两部分至少有一部分含有3个人. 

|F|=3. 这时候,如果 F3个人都互相不认识,自然命题得证;如果其中至少有 2个人互相认识,则这两个人与 A一起组成互相认识的 3个人.
|T|=3.如果 T3个人互相认识,命题得证;如果其中至少有 2个人互相不认识,再添加上 A即可得三个互相不认识的人.

引理可以叙述为: 如果对一个 6个顶点的完全图的边用红、 两种颜色去染色, 则一定存在一个单色的三角形.

引理2  若集合S10人组成, 那么S中存在至少4个人互相认识,或存在至少3个人互不认识.

证明 在这10个人当中任意固定一个人A,则其余人可以分成两类:

FA相互认识的人的集合

T:  与A相互不认识的人的集合

     由鸽巢原理, 至少有一类含有不少于5个的人. 证明可以分情况得到.

(1)若 |T| £ 3, 则 |F| ³ 6, 由 引理 2, F中有 3个互相认识的或者互相不认识的. 如果有 3个互相不认识的, 引理得证; 如果有 3个互相认识的, 再加上 A就是 4个互相认识的, 引理成立.

(2)|T| ³ 4, 如果T中所有人都是互相认识的, 引理得证; 如果T中至少有两个人互相不认识,  再加上A就是3个互相不认

识的, 引理也成立.                       

类似方法可以证明:

引理3  由10人组成的集合中或者有4人互不认识, 或者至少有3人互相认识.

引理420人组成集合中或者有4人互相认识, 或者有4人互不认识.

定义1p, q是任意给定的正整数,而且p>=2, q>=2. 如果存在一个最小的正整数R,使得任意R个人组成的集合S, 下面两件事中有一件必然成立:

(1) S中至少有p个人互相认识;

(2) S中至少有q个人互相不认识;

 则称R是具有参数p, q; 2Ramsey数,并记作R(p,q; 2), 可省略2, 而简记作R(p,q).

这里我们采用了一个通俗的定义.
由引理1, R(3,3)=6.
关于 Ramsey数的几点注释:

(1)Ramsey数可以用完全图边的2-染色来解释.

 用 K n来表示 n阶完全图, 显然 K n共有   n(n-1)/2条边.如果用 r (r >= 2)种颜色去染 K n的边, 每条边染一种颜色,所得到的每条边都染了色的 K n称为 r-染色 K n.可以用顶点表示人,边色表示关系.
Ramsey 数的性质

定理4  Ramsey数具下列简单性质:

(1)R(p, q)= R(q, p)

(2)R(p, 2)= p,R(2,q)=q

(3)R(p,q;1)= p+q-1

证明  (1), (2)结论明显.

(3)p+q-1=p+q-2+1, 利用鸽巢原理, 元素为p+q-1的集合的任意2-划分,要么第1个集合含有不少于p个元素,要么第2个集

合中含有不少于q个元素.

定理5  设p, q都是大于2的正整数, 则R(p,q)<=R(p-1,q)+R(p,q-1).

证明 R(p-1,q)+R(p,q-1)=n.

    在n个人中间, 任意固定一个人A, 其余n-1个人可以分成两类:

     F:A相互认识的人的集合;

     T:A互相不认识的人的集合.

由于n-1=R(p-1,q)+R(p,q-1)-1, 由鸽巢原理,|F|>=R(p-1,q)或者|T|>= R(p,q-1).

(1)|F|>= R(p-1,q).

  此时由R(p-1,q)的定义,F中或者有p-1个人互相认识,加上A就得到p个互相认识的人;或者有q个人互相不认识.

(2)|T|>=R(p,q-1).

此时由R(p,q-1)的定义,T中或者有p个人互相认识;或者有q-1个互相不认识的,再加上A就得到q个互相认识的人.因此任意n个人中间一定有p个互相认识,或者有q个人互相不认识.    

定理6  设p, q都是大于2的正整数, 当R(p-1,q)和R(p,q-1)都是偶数时,有R(p, q)£R(p-1, q)+R(p,q-1)-1.

推论1   R(3,4)=9.

证明 因为R(2,4)=4,R(3,3)=6, 所以由定理6,有R(3,4)£R(2,4)+R(3,3)-1=4+6-1=9.由下图中构造一个(,蓝)-着色K8不含

有蓝色K3也不含有红色K4. R(3,4)>8, 从而可得R(3,4)=9.

推论2   R(3,5)=14.

证明  因为R(2,5)=5, R(3,4)=9, 由定理5,R(3,5)<=R(2,5)+R(3,4)=5+9=14.

然后构造一个染色的K13,其中没有红色的K3, 也没有蓝色的K5. (图略)

推论3   设p, q是大于1的正整数,则 R(p,q)<=C(p+q-2,p-1)。










  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值