day41打卡

本文详细阐述了背包问题中的二维和一维状态表示,包括动态规划的递推方程,如二维dp[i][j]和一维dp[j]的计算,以及如何通过初始化和填表来求解背包问题的最大价值。重点介绍了01背包和完全背包的区别,并提供了示例代码.
摘要由CSDN通过智能技术生成

day41打卡

46. 携带研究材料(第六期模拟笔试)

状态表示

​ 二维:dp[i] [j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

image-20240224220905329


一维:

​ dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

状态转移方程

二维:

​ 如果想到dp[i][j]是从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少,那么可以有两个方向推出来dp[i] [j]

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)

  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1] [j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

    所以递归公式: dp[i][j] = max(dp[i - 1] [j], dp[i - 1][j - weight[i]] + value[i]);


一维:

​ dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j- 物品i重量的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j]

​ 此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

初始化

二维:

​ 首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总 和一定为0。

​ 状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看 出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

​ 那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

​ 当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

for (int j = 0 ; j < weight[0]; j++) {  // 这一步,如果把dp数组预先初始化为0了,这一步就可以省略
    dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

一维:

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

填表

二维:从左到右

一维:从左到右

返回值

二维:dp[n][m]

一维:dp[n]

#include <iostream>
#include <vector>
using namespace std;
int n = 0, BagWeight = 0;
void solve() {
    std::vector<int> weight(n, 0);
    std::vector<int> val(n, 0);
    for(int i = 0; i < n; i++) {
        cin >> weight[i];
    }
    for(int i = 0; i < n; i++) {
        cin >> val[i];
    }
    //创建dp数组
    std::vector<std::vector<int>> dp(weight.size(), vector<int>(BagWeight+1, 0));
    //初始化
    for(int i = weight[0]; i <= BagWeight; i++) {
        dp[0][i] = val[0];
    }
    //填表
    for(int i = 1; i < weight.size(); i++) {
        for(int j = 0; j <= BagWeight; j++) {
            if(j < weight[i]) dp[i][j] = dp[i-1][j];
            else dp[i][j] = max(dp[i-1][j], dp[i-1][j - weight[i]] + val[i]);
        }
    }
    cout << dp[weight.size() - 1][BagWeight] << endl;
}



int main()
{
    while(cin >> n >> BagWeight) {
        solve();
    }
    return 0;
}
// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;

int main() {
    // 读取 M 和 N
    int M, N;
    cin >> M >> N;

    vector<int> costs(M);
    vector<int> values(M);

    for (int i = 0; i < M; i++) {
        cin >> costs[i];
    }
    for (int j = 0; j < M; j++) {
        cin >> values[j];
    }

    // 创建一个动态规划数组dp,初始值为0
    vector<int> dp(N + 1, 0);

    // 外层循环遍历每个类型的研究材料
    for (int i = 0; i < M; ++i) {
        // 内层循环从 N 空间逐渐减少到当前研究材料所占空间
        for (int j = N; j >= costs[i]; --j) {
            // 考虑当前研究材料选择和不选择的情况,选择最大值
            dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);
        }
    }

    // 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值
    cout << dp[N] << endl;

    return 0;
}

416. 分割等和子集

一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包。

01背包

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

状态表示

dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

状态转移方程

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

初始化

从dp[j]的定义来看,首先dp[0]一定是0。

填表顺序

从左到右

返回值

dp[n]

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        //判断符合条件
        int sum = 0;
        for(auto& e : nums) {
            sum += e;
        }
        if(sum % 2 == 1) return false;
        int target = sum / 2;
        vector<int> dp(10001, 0);
        //01背包
        for(int i = 0; i < nums.size(); i++) {
            for(int j = target; j >= nums[i]; j--) {
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        if(target == dp[target]) return true;
        return false;
    }
};
  • 23
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值