自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(227)
  • 收藏
  • 关注

原创 完整项目:安全通信中的二项分布随机噪声类型的概率分析与统计

随着无线通信技术的快速发展和物联网、5G/6G等新兴应用的广泛部署,通信安全问题日益突出。传统的密码学方法主要依赖于计算复杂度,而物理层安全技术利用无线信道的物理特性提供了一种新的安全保障机制。二项分布噪声作为数字通信系统中最基本的噪声类型之一,其概率特性和统计行为对物理层安全性能具有重要影响。然而,现有研究多集中于高斯噪声模型,对二项分布噪声的系统性研究相对不足。本文针对安全通信场景,深入研究二项分布随机噪声的概率分析方法和统计特性,为物理层安全系统的设计与优化提供理论基础和技术支撑。

2026-01-29 12:54:11 590

原创 从 YOLOv5n 到 OpenVINO INT8 ≤2MB一个课堂手机检测系统的工程化落地实践

随着智能终端在校园环境中的普及,课堂中学生违规使用手机的行为对教学秩序产生了较大影响。针对传统人工巡查效率低、主观性强的问题,本文设计并实现了一种面向课堂场景的轻量化手机检测与预警系统,在保证检测精度的同时,满足嵌入式与 CPU 端部署对模型体积与推理速度的严格约束。

2026-01-28 21:35:06 460

原创 当噪声成为护盾:安全通信中二项分布随机噪声的概率分析与统计特性

在大多数通信系统中,噪声通常被认为是影响系统性能的主要因素之一。工程师们不断优化算法、提升硬件性能,目的几乎都是为了减少噪声对信号的影响,提高传输的可靠性与准确性。

2026-01-28 20:12:28 570

原创 OpenVINO INT8 量化:不是玄学,是性价比

在 Intel CPU 推理场景下,只要校准数据足够“像真实输入”,INT8 往往能在几乎不牺牲精度的前提下,显著降低延迟、提升吞吐。本文结合实战经验,聊清楚 INT8 什么时候值得做、为什么容易翻车,以及一套可落地的量化思路。

2026-01-28 13:00:52 59

原创 考试作弊异常行为检测数据集(YOLO格式)

随着教育信息化的深入发展,考试监考工作面临着人力成本高、监控效率低、主观判断差异大等挑战。为推动智能监考技术的发展,本研究构建了一个面向考试异常行为检测的大规模标注数据集。该数据集包含5,463张高质量图像,按照7:2:1的比例划分为训练集(3,824张)、验证集(1,092张)和测试集(547张),确保了模型训练和评估的科学性。

2026-01-28 08:13:39 538

原创 基于 YOLO12 的考试作弊异常行为检测与分析系统 — 项目总结与开发心得

随着教育信息化的发展,传统人工监考方式在大规模考试中暴露出效率低、人力成本高、主观性强等问题。为提升考试管理智能化和规范化水平,本项目设计并实现了一套基于 YOLOv12 深度学习算法的考试异常行为检测与分析系统,能够对考场中多类异常行为进行实时识别、标注、统计和留存。

2026-01-27 22:01:27 426

原创 你在笑,算法在看:收费亭里的新考核

AI 走进收费亭,把“微笑服务”从口号变成了可量化的数据。摄像头捕捉表情,算法计算嘴角弧度、持续时间和情绪稳定度。从这一刻起,服务好坏不再完全由人判断,而员工的微笑也可能成为绩效指标。收费亭只是开始,当情绪被算法打分,服务行业的温度,正在悄悄改变。

2026-01-27 21:16:31 30

原创 AI 走进收费亭:微笑服务如何被算法

你有没有注意过一个细节——在高速公路收费亭里,收费员是否面带微笑,往往决定了司机对整个收费站的第一印象。然而,“微笑服务”这样看似温度十足、却极其主观的行为,真的能够被量化、被考核吗?在很长一段时间里,管理只能依赖抽查、录像回看和人工评分,不仅成本高、效率低,还容易引发争议。而今天,随着人工智能走进收费亭,这个问题,正在迎来全新的答案。

2026-01-27 18:03:52 320

原创 基于YOLO12的考试作弊异常行为检测与分析系统的设计与实现

摘要:随着教育信息化的不断发展,传统人工监考方式在实际考试过程中逐渐暴露出人力成本高、监控效率低以及主观性强等问题。为提升考试监考的智能化与规范化水平,本文设计并实现了一种基于 YOLOv12 深度学习算法的考试异常行为检测与分析系统。

2026-01-27 17:53:44 1388

原创 基于图像识别的自动阅卷系统:从答题卡到成绩的技术实现

在大规模考试场景中,人工阅卷普遍存在效率低、主观性强、重复劳动重等问题。随着计算机视觉与深度学习技术的发展,基于图像识别的自动阅卷系统逐渐具备工程落地条件。

2026-01-26 21:10:24 475

原创 当老师不用再熬夜改卷:一个“会看试卷”的人工智能系统是如何炼成的?

每到考试周,很多老师都有同一个感受:试卷像雪片一样飞来,眼睛快不行了,手也快不行了,但成绩还得“快、准、公平”地出来。

2026-01-26 21:08:15 265

原创 为何反作弊系统总是滞后?国内考试作弊检测的痛点与挑战

随着科技的飞速发展,考试作弊手段也在不断进化,而国内的考试作弊检测系统似乎总是难以跟上这一变化。无论是高考、期末考试,还是其他各类资格考试,作弊现象依然屡禁不止。那么,现有的作弊检测系统为何总是力不从心?它们的根本问题是什么?本文将带您走进国内考试作弊检测系统的现状,分析现有缺陷,并展望未来可能的技术突破。

2026-01-25 20:41:00 393

原创 从考试作弊看教育系统的盲点:为什么反作弊总是力不从心?

考试作弊一直以来都是国内教育系统中一个难以忽视的问题。无论是高考、期末考试,还是一些重要的资格考试,作弊现象屡禁不止。为什么明知作弊严重违法,依然层出不穷?这些现象背后,是教育体系中一些深层次的缺陷,它们究竟如何影响着我们的教育质量和公平性?

2026-01-25 20:38:15 259

原创 未来考试,作弊无所遁形:如何利用人工智能与大数据实现高效检测

考试作弊,作为一直困扰教育领域的问题,不仅影响了考试的公平性,也让诚信受到了严重威胁。想象一下,如果有一套智能系统,能够在实时监控中自动发现作弊行为,并及时发出警报,彻底改变传统的考试监控模式,那将会是怎样的场景?

2026-01-25 20:35:59 298

原创 破解考试作弊的“黑科技”!基于YOLO12的考场作弊异常行为检测系统设计与实现

是否曾经在考试中遇到过作弊现象?无论是偷偷交换答案,还是借助高科技作弊工具,传统的监考方式总是力不从心。今天,我们将为你揭示一项改变游戏规则的技术——基于YOLO12的考试作弊异常行为检测系统。这项技术不仅可以实时检测作弊行为,还能提供更加精准和高效的监控解决方案。让我们一起来看看,这项“黑科技”是如何实现的!

2026-01-25 20:33:19 399

原创 基于Matlab元胞自动机模拟(CA)动态再结晶过程(超本科水平)

动态再结晶是金属材料在热变形过程中发生的重要微观组织演变现象,对材料的力学性能和加工性能具有显著影响。本文采用元胞自动机(CA)方法,建立了动态再结晶过程的数值模拟模型,研究了金属材料在热变形过程中的微观组织演变规律。

2026-01-21 17:49:36 1415

原创 车辆品牌与类型检测数据集(YOLO格式)

本数据集是一个专门针对车辆品牌与类型识别的目标检测数据集,包含 7,029 张真实场景图像和 14,058 个精确标注框。数据集采用 YOLO 格式标注,涵盖 22 个主流汽车品牌和 6 个车型类别,旨在支持智能交通、车辆管理、停车场监控等场景中的车辆识别与分析。

2026-01-19 19:37:20 612

原创 公共区域传单分发检测数据集(YOLO格式)

数据集是一个专门针对公共区域发传单行为的目标检测数据集,包含 3,443 张真实场景图像和 6,886 个精确标注框。 数据集采用 YOLO 格式标注,涵盖 person(人员)和 leaflet(传单)两个核心类别, 旨在支持公共空间中人员与传单交互行为的智能识别与分析。

2026-01-19 17:32:04 703

原创 基于深度学习的车辆品牌与类型智能识别系统设计与实现

随着智能交通系统的快速发展,车辆识别技术在交通管理、智能停车、安全监控等领域发挥着越来越重要的作用。传统的车辆识别方法存在识别精度低、实时性差、适应性弱等问题,难以满足实际应用需求。本文设计并实现了一个基于YOLO11深度学习算法的车辆品牌与类型智能识别系统,旨在提高车辆识别的准确性和实时性。

2026-01-18 17:12:03 789

原创 基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白

随着 ITS、智慧城市和自动驾驶的发展,“车是什么车”这件事越来越重要。车辆自动识别与分类不仅要能分清品牌,还要能判断车型(轿车/SUV/MPV 等)。这些能力在交通流量分析、电子警察违法取证、停车场管理、车辆检索等场景里都能直接落地。

2026-01-16 22:40:42 80

原创 基于深度学习的泳池溺水行为检测算法设计

随着公共泳池和水上娱乐场所的普及,溺水事故已成为威胁人身安全的重要隐患之一。传统的人工监控方式依赖救生员的主观判断,存在疲劳、漏判和反应延迟等问题。近年来,深度学习与计算机视觉技术的快速发展,为泳池溺水行为的自动检测与预警提供了新的解决思路。

2026-01-15 22:38:34 977

原创 基于 YOLO 的课堂手机使用行为智能检测系统实践

随着课堂管理信息化的发展,如何在不干扰教学的前提下,对学生课堂手机使用行为进行客观、实时的监测,成为一个具有现实意义的问题。本文介绍了一种基于 YOLO 轻量化目标检测模型 的课堂手机使用行为智能识别系统的设计与实现过程。

2026-01-15 22:25:04 396

原创 基于多尺度深度卷积增强的YOLO11公共区域发传单违规行为检测系统——我之见

在城市公共区域治理中,违规发放商业传单一直是一个看似细小却长期存在的管理难题。地铁口、商业街、校园周边等区域,由于人流密集,常成为违规发传单的高发地带。这类行为不仅影响市容环境,还可能引发安全隐患与秩序混乱。传统治理方式高度依赖人工巡查,存在成本高、效率低、覆盖不连续等问题。

2026-01-15 22:00:25 369

原创 基于多尺度深度卷积增强的YOLO11公共区域发传单违规行为检测系统(2026年 力作)

针对公共区域发传单违规行为检测中小目标易漏检和复杂场景下检测精度不足的问题,提出了一种基于改进 YOLOv11 的智能检测方法。该方法通过引入 P2 高分辨率特征层增强小目标感知能力,并结合多尺度深度卷积注意力模块(MSDA)与高效通道注意力机制(ECA),提升特征表达与关键特征响应能力。实验结果表明,改进模型在自建数据集上取得 99.5% 的 mAP@50 和 95.6% 的 mAP@50:0.95,较基线模型提升 1.1 个百分点,在保证实时性的同时显著提高了检测精度。

2026-01-15 21:52:54 1077

原创 基于LSTM与集成学习融合的光伏发电功率预测系统设计与实现(MATLAB实现)

随着光伏发电在电力系统中的占比不断提高,准确的功率预测对电网调度与能源管理具有重要意义。本文设计并实现了一套基于 MATLAB 的光伏发电功率短期预测系统,采用深度学习与集成学习融合的建模思路提升预测精度与稳定性。

2026-01-13 16:33:49 651

原创 基于MATLAB地区光伏发电功率预测系统

随着新能源发电规模的不断扩大,光伏发电功率的准确预测对于电力系统调度、能源管理及电网安全运行具有重要意义。针对光伏发电受气象因素影响大、输出功率波动性强的问题,本文以地区光伏电站为研究对象,构建了一套光伏发电功率预测系统。

2026-01-12 16:05:23 564

原创 室内可见光通信系统的性能分析与误码率仿真研究-基于Lambertian直射信道模型与参考噪声地板方法

可见光通信(Visible Light Communication, VLC)作为一种融合照明与通信功能的新型无线通信技术,在室内短距离高速通信场景中具有广阔的应用前景。针对室内可见光通信系统中链路距离变化及信道特性对系统误码率性能的影响,本文基于 Lambertian 直射(LOS)信道模型,建立了一套完整的室内 VLC 系统仿真框架,对系统的误码率(Bit Error Rate, BER)性能进行了系统分析与仿真研究。

2026-01-09 17:34:40 557

原创 服装厂废料(边角料)YOLO格式分类检测数据集

本研究采用的服装厂废料(边角料)分类检测数据集由研究团队自主构建,具备完整的数据采集与标注流程,并具有自主知识产权。数据集面向车间废料分拣与智能回收应用,涵盖棉布、牛仔布、针织布、皮革、涤纶、缝纫线团及人造皮革等 7 类典型废料目标。样本来源于实际及模拟车间场景,覆盖不同堆叠、遮挡、视角与光照条件,具有较强的代表性与多样性,可为 YOLO11 模型训练与性能评估提供有效支撑。

2026-01-09 10:32:54 711

原创 基于机器视觉与YOLO11的服装厂废料(边角料)分类检测系统(数据集+UI界面+训练代码+数据分析)

摘要:随着服装制造行业规模不断扩大,生产过程中产生的布料边角料、缝纫线团以及皮革碎料等废弃物数量显著增加。传统人工分拣方式存在效率低、误分率高、劳动强度大等问题,难以满足智能化生产与绿色回收需求。为提高服装厂废料分类效率与可回收资源利用率,本研究设计并实现了一种基于机器视觉的服装厂废料(边角料)分类检测系统。

2026-01-09 09:32:35 735

原创 基于MATLAB图像处理的苹果品质自动分级系统设计与实现

为实现苹果外观品质的快速、客观评价,针对传统人工分级效率低、主观性强的问题,本文设计并实现了一种基于 MATLAB 图像处理技术的苹果品质自动分级系统。

2026-01-08 08:43:57 812

原创 基于 YOLOv8 的智慧考场考试防作弊行为检测系统设计与实现

随着在线考试和信息化教学的快速发展,传统人工监考方式在大规模考试场景中逐渐暴露出效率低、主观性强和监管成本高等问题。基于计算机视觉与深度学习的智慧考场技术,能够对考生行为进行自动分析与实时监测,成为当前教育信息化建设的重要研究方向。本文基于 YOLOv8 目标检测算法,设计并实现了一套智慧考场考试防作弊行为检测系统,对考试过程中可能出现的作弊行为进行自动识别与预警,从而提升考试的公平性与智能化水平。

2026-01-05 10:14:16 292

原创 YOLO11 车型与车辆品牌检测系统— 让“看懂每一辆车”成为现实

在智慧交通与城市智能化快速发展的背景下,仅仅“检测到车辆”已经无法满足实际需求。人们更希望系统能够进一步识别车辆的车型与品牌,从而为交通管理、安防监控和商业分析提供更深层的数据支撑。基于此,YOLO11 车型与车辆品牌检测系统应运而生,让计算机视觉真正“看懂”每一辆车。

2026-01-05 09:57:55 208

原创 人员异常行为检测YOLO格式检测数据集

本研究采用的人员异常行为检测数据集由研究团队自主构建,具备完整的数据采集、标注与整理流程,并具有明确的自主知识产权。数据集面向智能安防应用场景,涵盖正常行为及打架、斗殴、抢劫、盗窃等多类异常行为,样本来源于不同视角和光照条件下的模拟监控环境。数据标注严格遵循 YOLO 目标检测格式,为基于 YOLO 系列模型的人员异常行为检测提供了可靠的数据基础。

2026-01-05 09:52:21 705

原创 基于YOLO11的人员异常行为检测与识别智能安防监控系统设计

随着人工智能技术的发展,基于计算机视觉的行为检测系统逐渐成为公共安全领域的重要工具。本研究提出了一种基于YOLOv11模型的行为异常检测与智能识别系统。该系统能够实时监控公共场所中的员工行为,通过视频监控和图像识别技术,识别四种主要的异常行为:涉嫌打架、涉嫌斗殴、涉嫌抢劫和涉嫌盗窃。系统采用YOLOv11进行目标检测,结合多种数据处理方法进行异常行为识别,并通过语音告警和邮件告警系统及时通知相关人员,确保安全事件得到快速响应。

2026-01-05 09:31:11 1756

原创 轨道交通车站客流YOLO格式检测数据集

本研究使用的数据集由猿创作者团队整理优化,专门针对轨道交通车站客流监控应用场景设计,主要包含车站内行人的常规数据。所有样本均来自真实的轨道交通车站环境,能够有效反映行人在不同场景下的行为模式和复杂性。数据集采用YOLO目标检测标准格式,重点聚焦于行人检测,为轨道交通领域的智能监控与客流分析提供了宝贵的数据资源。

2025-12-31 19:00:12 539

原创 突破传统监控:基于YOLO的人员异常行为检测与识别智能安防监控系统设计

着智能城市的快速发展,传统的安防监控系统逐渐暴露出其局限性,尤其是在应对实时异常行为检测和快速反应方面。传统监控依赖人工分析,不仅效率低,而且容易错过重要的安全隐患。因此,基于深度学习的智能监控系统成为安防领域的未来趋势。特别是基于YOLO(You Only Look Once)目标检测算法的人员异常行为智能识别与实时防范系统,凭借其高效、精准的特点,正在成为现代智能安防解决方案的核心。

2025-12-31 17:38:52 287

原创 基于YOLO11的轨道交通车站客流密度实时监测与拥挤预警系统(数据集+UI界面+训练代码+数据分析)

随着城市轨道交通客流量的不断增加,车站内的拥挤状况已成为影响乘客安全和出行体验的关键因素。为了实现对车站内客流密度的实时监控与拥挤预警,本研究提出了一种基于YOLO11目标检测模型的智能监测系统。该系统通过对车站监控视频进行实时处理,采用YOLO11模型对车站内的乘客进行精确识别与计数,并计算每个区域的客流密度。

2025-12-31 17:29:33 806

原创 别再“套公式”式改 YOLO 了:真正有效的算法改进,永远从问题本身出发

近年来,YOLO 系列目标检测算法凭借端到端、高速度、易部署的特性,几乎成为工业界与学术界的“标配”。与此同时,“YOLO 算法改进”也成了论文、博客和工程项目中的高频关键词。然而一个不容忽视的现实是:大量所谓的“改进”,只是对已有方法的简单拼接和复刻,脱离实际问题,最终效果并不理想。

2025-12-27 08:13:53 396

原创 非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现

随着智能交通和自动驾驶技术的快速发展,车辆在复杂道路环境中实现安全、平稳和高精度的路径跟踪与避障控制成为研究热点。

2025-12-27 07:21:58 316

原创 基于Matlab的Logistic混沌映射语音信号加密与解密系统设计与仿真

为了保护语音信号在网络通信中的传输安全,避免敏感语音信息被非法窃取或篡改,本文设计并实现了一种基于Logistic混沌映射的语音信号加密与解密系统。该系统采用MATLAB作为开发平台,并结合GUI(图形用户界面)技术,为用户提供了友好的交互界面,支持语音信号的录制、加密、解密以及信号的时域和频域可视化分析功能。通过混沌理论中的Logistic映射生成加密序列,系统实现了高效且复杂的语音加密过程。

2025-12-27 06:49:29 539

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除