PyTorch计算图

本文介绍了计算图在PyTorch中的应用,它用于表示神经网络的多层复合函数,便于进行自动求导。通过一个具体的例子展示了如何利用计算图求得dz/dx和dz/dy。
摘要由CSDN通过智能技术生成

计算图(Computational Graph)

计算图是计算代数中的一个基础处理方法,我们可以通过一个有向图来表示一个给定的数学表达式,并可以根据图的特点快速方便对表达式中的变量进行求导。而神经网络的本质就是一个多层复合函数, 因此也可以通过一个图来表示其表达式。

#torch.autograd.Variable 实现自动求导
"""
本质上Variable和Tensor没有什么区别,
不过Variable会放在一个计算图里面,
可以进行前向传播和反向传播以及求导
"""
import torch
from torch.autograd import Variable
# requires_grad 表示是否对其求梯度,默认是False
x = Variable(torch.Tensor([
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值