1. Numpy.array()详解
该函数的作用一言蔽之就是用来产生数组。
1.1 函数形式
- numpy.array(object,
- dtype=None,
- copy=True,
- order='K',
- subok=False,
- ndmin=0)
1.2 参数详解
object:必选参数,类型为array_like,可以有四种类型:数组,公开数组接口的任何对象,__array__方法返回数组的对象,或任何(嵌套)序列。np.array()的作用就是按照一定要求将object转换为数组。
dtype:可选参数,用来表示数组元素的类型。如果没有给出,那么类型将被确定为保持序列中的对象所需的最小类型。注: This argument can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.
copy:可选参数,类型为bool值。如果为true(默认值),则复制对象。否则的话只有在以下三种情况下才会返回副本:(1).if __array__ returns a copy;(2). if obj is a nested sequence;(3). if a copy is needed to satisfy any of the other requirements (dtype, order, etc.)
order:{‘K’, ‘A’, ‘C’, ‘F’},optional 。指定阵列的内存布局。该参数我至今还没有遇到过具体用法,这句话的意思就是我不会,故在此省略。
subok:可选参数,类型为bool值。如果为True,则子类将被传递,否则返回的数组将被强制为基类数组(默认)。或者说,True:使用object的内部数据类型,False:使用object数组的数据类型。
ndmin:可选参数,类型为int型。指定结果数组应具有的最小维数。
返回对象
out:输出ndarray,满足指定要求的数组对象
1.3 具体用法
- import numpy as np
- arr01 = np.array([1,2,3])
- print(arr01) #[1 2 3]
- print(type(arr01)) #<class 'numpy.ndarray'>
- print(arr01.dtype) #int32
- #Upcasting
- arr02 = np.array([1.,2.,3.])
- print(arr02) #[1. 2. 3.]
- print(arr02.dtype) #float64
- #More than one dimension:
- arr03 = np.array([[1,2],[3,4]])
- print(arr03)
- """
- [[1 2]
- [3 4]]
- """
dtype参数使用示例
- import numpy as np
- #指定数组元素类型为复数类型
- DYX= np.array([1,2,3],dtype = complex)
- print(DYX) #[1.+0.j 2.+0.j 3.+0.j]
- print(DYX.dtype) #complex128
- #由多个元素组成的数据类型:
- HXH = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i8')])
- print(HXH) #[(1, 2) (3, 4)]
- #下面的输出有点神奇,我也只能记住规律了。
- print(HXH["a"]) #[1 3]
- print(HXH["b"]) #[2 4]
- print(HXH.dtype) #[('a', '<i4'), ('b', '<i8')]
- print(HXH["a"].dtype) #int32
- print(HXH["b"].dtype) #int64
- TSL = np.array([(1,2,3),(4,5,6)],dtype=[("a","i"),("b","i"),("c","i")])
- print(TSL["a"]) #[1 4]
- print(TSL["a"].dtype) #int32
subok参数使用示例
- import numpy as np
- DYX = np.array(np.mat('1 2; 3 4'))
- #没有显示的写出subok的值,但是默认为False
- print(DYX)
- #数组类型
- print(type(DYX)) #<class 'numpy.ndarray'>
- """
- [[1 2]
- [3 4]]
- """
- HXH = np.array(np.mat('1 2; 3 4'), subok=True)
- print(HXH)
- #矩阵类型
- print(type(HXH)) #<class 'numpy.matrixlib.defmatrix.matrix'>
- """
- [[1 2]
- [3 4]]
- """
前文对subok的描述是这样的:“如果为True,则子类将被传递,否则返回的数组将被强制为基类数组(默认)”。
在上文的代码中“np.mat('1 2; 3 4')”,就是子类,是矩阵类型。DYX = np.array(np.mat('1 2; 3 4'))中subok为False,返回的数组类型被强制为基类数组,所以DYX的类型是<class 'numpy.ndarray'>,是数组;HXH = np.array(np.mat('1 2; 3 4'), subok=True)中subok为True,子类被传递,所以HXH的类型是矩阵<class 'numpy.matrixlib.defmatrix.matrix'>。
2. Asarray和Array辨析
2.1 object对象是普通迭代序列时
- import numpy as np
- data = [1,1,1]
- print(type(data)) #<class 'list'> 列表类型
- arr_ar = np.array(data)
- arr_as = np.asarray(data)
- #输出上没有区别
- print(arr_ar) #[1 1 1]
- print(arr_as) #[1 1 1]
- data[1]=2
- #改变原序列对arr_ar和arr_as没影响
- print(arr_ar) #[1 1 1]
- print(arr_as) #[1 1 1]
- #此时data是[1, 2, 1]
- #改变arr_ar和arr_as对原序列没有影响
- arr_ar[1]=3
- print(data) #[1, 2, 1]
- arr_as[1]=3
- print(data) #[1, 2, 1]
可见在参数对象是普通迭代序列时,asarray和array没有区别(在我的理解范围内)。
2.2 object对象是ndarray对象时
- import numpy as np
- data = np.ones((3,))
- #print(type(data)) #<class 'numpy.ndarray'> 数组类型
- arr_ar = np.array(data)
- arr_as = np.asarray(data)
- print(arr_ar) #[1. 1. 1.]
- print(arr_as) #[1. 1. 1.]
- """
- 这边区别就出来了。修改原始序列后,
- np.array()产生的数组不变,
- 但是np.asarray()产生的数组发生了变化
- """
- data[1]=2
- print(arr_ar) #[1. 1. 1.]
- print(arr_as) #[1. 2. 1.] !!!
- """
- 这边也有区别,修改array产生的数组,不影响原始序列
- 修改asarray产生的数组,会影响原始序列
- """
- #此时data=[1. 2. 1.]
- arr_ar[2]=3
- print(data) #[1. 2. 1.]
- arr_as[2]=3
- print(data) #[1. 2. 3.]
我们总结一下:相同点:array和asarray都可以将数组转化为ndarray对象。区别:当参数为一般数组时,两个函数结果相同;当参数本身就是ndarray类型时,array会新建一个ndarray对象,作为参数的副本,但是asarray不会新建,而是与参数共享同一个内存。重点就是这个共享内存。