机器学习
文章平均质量分 95
DeveanYe
www.devean.cn拥有7+年互联网服务架构经验、AI产品研发,专注致力于人工智能、机器学习前言技术的研究、分享AI技术知识、希望在AI研发之路与您同行!
展开
-
机器学习 | 线性回归
本文从线性回归概念、回归模型、损失函数,线性回归模型对比、回归模型评估、回归模型拟合度调优阐释线性回归基础原创 2023-11-04 22:15:14 · 377 阅读 · 0 评论 -
机器学习 | 朴素贝叶斯原理与情感倾向预测实战
本文从贝叶斯定理、朴素贝叶斯概念、应用场景、原理、实现思路、python实现情感倾向预测、模型调优来快速学会朴素贝叶斯,完整版代码见文末。原创 2023-10-30 21:30:42 · 1299 阅读 · 1 评论 -
机器学习 | 基础概念详解
一文看懂机器学习是什么,分类、基础模型原理原创 2023-10-29 23:07:09 · 503 阅读 · 0 评论 -
机器学习| K邻近疾病预测演示
进行投票:看最近的3个邻居中,有多少是正例,多少是负例。年龄、胆固醇水平、收缩压、BMI:这些是数值特征,可以进行标准化或最小-最大缩放。投票结果,在三个邻居中有两个是心脏病,一个不是心脏疾病。因此预测A可能有心脏病。找到最近的k个邻居:根据计算出的距离,我们选择最近的k(此处为3)个数据点。假设K=3,我们依据分类任务投票机制,找出A数据点最近的三个领居。老年动脉硬化:轻度 = 0, 中度 = 1, 重度 = 2。计算距离:我们需要计算A与所有训练数据点的距离。是否有心脏疾病:否 = 0, 是 = 1。原创 2023-10-27 17:41:31 · 166 阅读 · 0 评论 -
机器学习|特征缩放
特征缩放又称归一化,是机器学习中的一种技术,涉及调整数值数据的量度,使所有数据点在相似的尺度上。例如:身高、体重、年龄、收入等个人特征数据,每个维度的区间不一样,为保证所有维度的特征数据尺度一样,我们就需要对原始数据做特征缩放,将身高、体重、年龄、收入都转化为区间[0,1]之间的数据。原创 2023-10-25 14:42:22 · 284 阅读 · 0 评论 -
机器学习 | K均值聚类(K-means Clustering)
本文从概念、应用场景、原理、工作流程、优缺点、应用实践、代码、可视化等几方面诠释 K 均值聚类模型原创 2023-10-28 09:56:36 · 642 阅读 · 0 评论 -
机器学习|K邻近(K Nearest-Neighbours)
例如,若果你想分类一个新的数据点(绿点),可以查看训练数据中哪些数据点与它最接近,并根据这些最接近的数据点和标签来预测它的标签(红点或蓝圆)。在日常生活中,我们经常无意识地使用欧几里得距离,例如,当我们说两地之间的"直线"距离时,实际上是在引用欧几里得距离。这是一个用户指定的正整数,即训练数据分类数量,代表要考虑的最近邻居的数量,上图中假设 K=2,即训练数据分类为蓝色圆和红色三角两类标签。随着 k 值的增加,分类决策的边界会变得更加平滑,可能会忽视数据中的细微模式,导致欠拟合。用于计算数据点之间的距离。原创 2023-10-26 13:56:52 · 320 阅读 · 0 评论