机器学习是人工智能的一个分支,它让计算机从数据中自动“学”到知识,并用这些知识做决策或预测,而不需要我们一步步明确地告诉它怎么做。
传统数学 vs 机器学习
-
数学建模
-
机器学习
相同点
- 数据驱动: 两者都利用数据来构建和验证模型。
- 预测和推断: 数学建模和机器学习都可以用于预测未知的输出或解释数据中的模式。
- 优化问题: 在某些情况下,两者都可能涉及到优化问题,例如,寻找最小化误差的参数。
不同点
1.目的
- 数学建模:旨在用数学的形式来描述现实世界中的现象或问题,往往为了理解其背后的机制或原理。
- 主要关注的是预测和泛化。机器学习模型可能不太关心背后的机制,而是关心在未知数据上的性能。
- 模型构建
- 数学建模:模型的形式通常基于对现象的物理、生物或经济学的理解。例如,描述人口增长的模型可能基于出生率和死亡率的估计。
- 机器学习:模型的形式主要基于数据。使用的模型可能没有明确的现实意义,例如深度学习模型。
- 验证
- 数学建模:模型的验证通常基于其是否与现实世界的观察相符合,以及其是否可以提供洞察力。
- 机器学习:验证通常基于模型在独立测试集上的性能。
- 模型的解释性
- 数学建模:模型往往更具解释性,因为它们是基于现象的某些已知原理或规律构建的。
- 机器学习:尤其是某些复杂的模型,如深度神经网络,可能难以解释。尽管如此,机器学习领域也有许多工作在努力提高模型的可解释性。
- 应用
- 数学建模:常应用于工程、物理学、经济学等领域,以帮助专家了解和控制系统。
- 机器学习:广泛应用于计算机视觉、自然语言处理、推荐系统等领域,主要关注自动化和预测。
- 模型复杂性
- 数学建模:往往倾向于使用更简单的、基于物理学或其他学科原理的模型。
- 机器学习:可能使用非常复杂的模型,特别是当数据量大且复杂度高时。
总的来说,数学建模和机器学习都是理解、解释和预测现象的工具,但它们的关注点、方法和应用有所不同。
主要类别
机器学习主要分为三大类&