[THUPC2019] 不等式

description
对于给定的 { a i } , { b i } \{a_i\},\{b_i\} {ai},{bi},定义 f k ( x ) = ∑ i = 1 k abs ⁡ ( a i x + b i ) f_k(x)=\begin{matrix}\sum_{i=1}^k\end{matrix}\operatorname{abs}(a_ix+b_i) fk(x)=i=1kabs(aix+bi)

对于每一个 k k k,求 f k ( x ) f_k(x) fk(x)的最小值


solution
首先考虑 a i = 1 a_i=1 ai=1的时候,也就是我们要求 min ⁡ { ∑ ∣ x + b i ∣ } \min\{\sum |x+b_i|\} min{x+bi}
∣ x + b i ∣ |x+b_i| x+bi的几何意义就是在数轴上, x x x − b i -b_i bi这个点的距离
那么根据初一数学的芝士 x x x取所有 − b i -b_i bi的时候可以取到最小值

那么当 a i = − 1 a_i=-1 ai=1的时候呢?每一个式子变成了 ∣ − x + b i ∣ = ∣ x − b i ∣ |-x+b_i|=|x-b_i| x+bi=xbi,也就是数轴上 x x x b i b_i bi的距离
这样的话我们还是把一个式子对应成了一个点

∣ a i ∣ ≠ 1 |a_i|\neq1 ai=1时,也就是式子是最基本的 ∣ a i x + b i ∣ |a_ix+b_i| aix+bi时,我们转化一下,变成 ∣ a i ∣ ∣ x + b i a i ∣ |a_i||x+\frac{b_i}{a_i}| aix+aibi,注意外面 a i a_i ai的绝对值不能丢
这个式子相当于 a i a_i ai倍的 x x x − b i a i -\frac{b_i}{a_i} aibi的距离,相当于把它转化成了 a i a_i ai个点

这样的话类比 a i = 1 a_i=1 ai=1的时候的方法,利用一个线段树维护这道题就轻松解决了

注意因为坐标可能出现分数,所以我们需要先算出每个式子转化成的坐标离散化之后再进行建树

细节还是挺多的,注意需要考虑 a i = 0 a_i=0 ai=0的情况


code

#include <bits/stdc++.h>
using namespace std;
# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)
# define int long long
# define double long double 

const int N=1e6+5;

template<typename T> void read(T &x){
   x=0;int f=1;
   char c=getchar();
   for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
   for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
    x*=f;
}

int n;
int a[N],b[N];
double x[N],lsh[N];
int pos[N],tot,add;

struct node{
    int l,r,cnt;
    double sum;
}seg[N<<2];

# define lc (u<<1)
# define rc (u<<1|1)

void pushup(int u){
    seg[u].cnt=seg[lc].cnt+seg[rc].cnt;
    seg[u].sum=seg[lc].sum+seg[rc].sum;
}

void build(int u,int l,int r){
    seg[u].l=l,seg[u].r=r;
    if(l==r)return;
    int mid=l+r>>1;
    build(lc,l,mid);
    build(rc,mid+1,r);
}

void update(int u,int x,int k,double xc){
    if(seg[u].l==seg[u].r){
        seg[u].cnt+=k;
        seg[u].sum+=xc*k;
        return;
    }
    int mid=seg[u].l+seg[u].r>>1;
    if(x<=mid)update(lc,x,k,xc);
    else update(rc,x,k,xc);
    pushup(u);
}

int kth(int u,int k){
    if(seg[u].l==seg[u].r)return seg[u].l;
    if(seg[lc].cnt>=k)return kth(lc,k);
    else return kth(rc,k-seg[lc].cnt);
}

int qcnt(int u,int l,int r){
    if(l>r)return 0;
    if(seg[u].l>=l&&seg[u].r<=r)return seg[u].cnt;
    int mid=seg[u].l+seg[u].r>>1;
    int res=0;
    if(l<=mid)res+=qcnt(lc,l,r);
    if(r>mid)res+=qcnt(rc,l,r);
    return res;
}

double query(int u,int l,int r){
    if(l>r)return 0;
    if(seg[u].l>=l&&seg[u].r<=r)return seg[u].sum;
    int mid=seg[u].l+seg[u].r>>1;
    double res=0;
    if(l<=mid)res+=query(lc,l,r);
    if(r>mid)res+=query(rc,l,r);
    return res;
}

signed main()
{
    read(n);
    Rep(i,1,n)read(a[i]);
    Rep(i,1,n)read(b[i]);
    Rep(i,1,n)x[i]=lsh[i]=-1.0*b[i]/a[i];
    sort(lsh+1,lsh+n+1);
    int sz=unique(lsh+1,lsh+n+1)-lsh-1;
    Rep(i,1,n)pos[i]=lower_bound(lsh+1,lsh+sz+1,x[i])-lsh;
    build(1,1,sz);
    Rep(i,1,n){
        if(!a[i])add+=abs(b[i]);
        else update(1,pos[i],abs(a[i]),x[i]),tot+=abs(a[i]);
        int to=kth(1,tot+1>>1);
        printf("%Lf\n",(lsh[to]*qcnt(1,1,to-1)-query(1,1,to-1))+(query(1,to+1,sz)-lsh[to]*qcnt(1,to+1,sz))+add);
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值