Differential Geometry之第六章平面曲线的整体性质

第六章、平面曲线的整体性质

1.平面的闭曲线

1.1.切线的旋转指数定理

1.2.等周不等式与圆的几何特性

 

,其中

 

 

 

2.平面的凸曲线

支撑函数:

 

2.1.Minkowski问题

2.2.四顶点定理

 

 

转载于:https://www.cnblogs.com/huangshiyu13/p/6130329.html

微分几何学是研究空间中曲线、曲面和其他几何对象的性质和关系的数学分支。作为一门高级数学学科,微分几何学通常需要一定的数学基础,包括线性代数、微积分和拓扑学等。第一步涉及到的主要内容如下: 1. 熟悉基本概念:了解微分几何学的基本概念是学习的第一步。这包括了解曲线和曲面的定义、切向量、法向量、曲率、曲率矢量等重要的几何概念。 2. 学习欧几里得空间的基本性质:了解欧几里得空间是微分几何学的基础,并学习其基本性质和公理。欧几里得空间是指具有度量的空间,其中度量是定义了距离和角度的函数。 3. 掌握向量场和切空间:向量场和切空间是微分几何学的重要内容。向量场描述了每一个点上的向量,而切空间是每个点上的向量场的集合。学习切空间的性质和计算方法是学习微分几何学的关键。 4. 学习微分流形的概念:微分流形是微分几何学的核心概念之一。了解微分流形的定义和性质,包括流形的维度、流形上的坐标系和变换、切空间的结构等。 5. 引入曲率的概念:曲率是微分几何学中重要的概念之一,它描述了曲线和曲面的非平直性。学习曲率的计算和性质是学习微分几何学的重要一步。 总之,微分几何学的初步学习涉及到熟悉基本概念、学习欧几里得空间和向量场、掌握切空间和微分流形的概念,并学习曲率的计算和性质。掌握了这些基本知识,可以为深入研究微分几何学打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值