微分几何笔记(4) —— 二维三维空间中曲线的曲率以及环绕数

本篇文章我们从一般化的 R n \mathbb{R}^n Rn 空间回到我们生活的 R 2 , R 3 \mathbb{R}^2,\mathbb{R}^3 R2,R3空间,看看低维空间中的曲线有哪些性质,主要计算下在非弧长参数下的曲线,曲率挠率的一般表达式。
最后引入环绕数的概念,讲讲怎么数曲线转了多少圈。
 
 

4.1 二维空间中的曲线

二维空间中的曲线(plane curves)的Frenet运动方程:
d d t ( e 1 ( t ) e 2 ( t ) ) = ( 0 ω ( t ) − ω ( t ) 0 ) ⋅ ( e 1 ( t ) e 2 ( t ) ) \frac{d}{dt}\begin{pmatrix} e_1(t)\\ e_2(t) \end{pmatrix}= \begin{pmatrix} 0&\omega (t)\\ -\omega (t)& 0 \end{pmatrix}\cdot \begin{pmatrix} e_1(t)\\e_2(t) \end{pmatrix} dtd(e1(t)e2(t))=(0ω(t)ω(t)0)(e1(t)e2(t))
这里 ω ( t ) = ω 1 , 2 ( t ) = e 1 ′ ( t ) ⋅ e 2 ( t ) \omega (t)=\omega_{1,2}(t) =e_1'(t)\cdot e_2(t) ω(t)=ω1,2(t)=e1(t)e2(t) ,曲率 κ ( t ) ≜ ω ( t ) ∣ c ′ ( t ) ∣ \kappa(t)\triangleq \frac{\omega (t)}{|c'(t)|} κ(t)c(t)ω(t),详细的定义写在之前一篇笔记中。
进一步,在弧长参数下有 c ′ ′ ( s ) = e 1 ′ ( s ) = ω ( s ) e 2 ( s ) = κ ( s ) e 2 ( s ) c''(s)=e'_1(s)=\omega(s)e_2(s)=\kappa(s)e_2(s) c(s)=e1(s)=ω(s)e2(s)=κ(s)e2(s) 所以有 ∣ c ′ ′ ( s ) ∣ = ∣ κ ( s ) ∣ |c''(s)|=|\kappa(s)| c(s)=κ(s)

这里我们可以看到平面曲线曲率正负的意义:
首先最主要的一点是,因为在每一点曲率是一个数而已,这说明曲线二阶导的方向,与 e 2 ( s ) e_2(s) e2(s)的方向相同或者相反,总之他们在一条直线上!
(我写完之后几天又绕回了这个问题,发现这是相当本质的一个结论, n n n维欧式空间中,非退化的曲线,自身前 n n n 阶导数就是正交的!)

因为二阶导数的正负,决定了曲线的凹凸性,二阶导大于0,曲线下凸;二阶导小于0,曲线上凸;二阶导等于0,曲线没有凸性。
再结合由Frenet标架自身性质所决定的, e 1 ( s ) e_1(s) e1(s)为曲线的切线方向, e 2 ( s ) e_2(s) e2(s) e 1 ( s ) e_1(s) e1(s)逆时针旋转 9 0 ∘ 90^{\circ} 90 得到(为了和 R 2 \mathbb{R}^2 R2空间中的基底保持相同定向。)所以我们知道, κ ( s ) > 0 \kappa (s)>0 κ(s)>0 表示 e 2 ( s ) e_2(s) e2(s)与曲线弯曲方向相同,反之,则相反;若 κ ( s ) = 0 \kappa(s)=0 κ(s)=0自然表示曲线在这一点处不弯曲。(不同的参数 s s s 或者 t t t 并不改变上述向量的方向,只是在大小上相差个常数倍。)
在这里插入图片描述
接下来,我们来算一算,如果不对曲线进行弧长参数化,用最原本的参数,曲率的表达式是怎样的:

Proposition 4.1.1 c : I → R 2 c:I\rightarrow \mathbb{R}^2 c:IR2 为一条满足Frenet条件的参数化平面曲线,则其曲率 κ ( t ) = det ( c ′ ( t ) , c ′ ′ ( t ) ) ∣ c ′ ( t ) ∣ 3 \kappa(t)=\frac{\text{det}(c'(t),c''(t))}{|c'(t)|^3} κ(t)=c(t)3det(c(t),c(t))

Proof:
对任意参数曲线,都可以写成 c = c ~ ∘ ϕ c = \tilde{c} \circ \phi c=c~ϕ的形式,这里 s = ϕ ( t ) = ∫ x 0 t ∣ c ′ ( τ ) ∣ d τ , ∴ ϕ ′ = ∣ c ′ ( t ) ∣ s=\phi (t)= \int^t_{x_0}|c'(\tau)|d\tau,\therefore \phi'=|c'(t)| s=ϕ(t)=x0tc(τ)dτ,ϕ=c(t)(证明写在笔记(2)中的命题2.2.5)
那么
c ′ ( t )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值