pe150

求出每行的前缀和,然后暴力就可以了

O(N^3)

public class PE150 {
    static long t = 0;

    final int n = 1000;
    long[][] a = new long[n + 1][n + 1];
    long[][] sum = new long[n + 1][n + 1];

    static long next() {
        t = (615949 * t + 797807) % (1 << 20);
        return t - (1 << 19);
    }


    long res = Long.MAX_VALUE;

    public static void main(String[] args) {
        PE150 pe150 = new PE150();
        pe150.init();
        pe150.run();

    }

    void run() {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                long tmp = a[i][j];
                updateRes(tmp);
                for (int k = i + 1; k <= n; k++) {
                    //这一行的末尾列
                    int l = j + k - i;
                    //这一行的数字个数
                    int curNumber = k - i + 1;
                    tmp += sum[k][l] - sum[k][l - curNumber];
                    updateRes(tmp);
                }
            }
        }
        System.out.println(res);
    }

    private void updateRes(long tmp) {
        res = Math.min(res, tmp);
    }


    void init() {
        //初始化数组
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                a[i][j] = next();
            }
        }
        //每行前缀和
        for (int i = 1; i <= n; i++) {
            sum[i][0] = 0;
            for (int j = 1; j <= i; j++) {
                sum[i][j] = sum[i][j - 1] + a[i][j];
            }
        }

    }
}

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值