原根

阶:

若 ( a , m ) = 1 , 使 a l ≡ 1 ( m o d m ) 成 立 的 最 小 的 l , 成 为 a 关 于 模 m 的 阶 , 记 为 o r d m a . 若(a, m)= 1, 使a^l \equiv 1\pmod m成立的最小的l, 成为a关于模m的阶,记为ord_ma. (a,m)=1,使al1(modm)l,am,ordma.
若 o r d m a = l , 则 o r d m a t = l ( t , l ) 若ord_ma = l, 则ord_ma^t = \frac{l}{(t, l)} ordma=l,ordmat=(t,l)l

 

原根:

( g , m ) = 1 , 若 o r d m g = φ ( m ) , 则 称 g 为 m 的 一 个 原 根 (g, m) =1, 若ord_mg = \varphi({m}), 则称g为m的一个原根 (g,m)=1,ordmg=φ(m)gm
g 为 m 的 一 个 原 根 当 且 仅 当 { g , g 2 , g 3 , ⋯ g φ ( m ) } 构 成 模 m 的 一 个 既 约 剩 余 系 g为m的一个原根当且仅当\{g, g^2, g^3, \cdots g^{\varphi{(m)}} \}构成模m的一个既约剩余系 gm{g,g2,g3,gφ(m)}m
 

判断是否有原根:

若 m 有 原 根 , 则 m 一 定 是 下 列 形 式 : 2 , 4 , p a , 2 p a , 这 里 p 为 奇 素 数 , a 为 正 整 数 若m有原根,则m一定是下列形式: 2, 4, p^a, 2p^a, 这里p为奇素数,a为正整数 mm:2,4,pa,2papa
 

求所有原根:

设 g 为 m 的 一 个 原 根 , 则 集 合 设g为m的一个原根,则集合 gm,
S = { g s ∣ 1 ⩽ s ⩽ φ ( m ) , ( s , φ ( m ) ) = 1 } S = \{g^s | 1 \leqslant s \leqslant \varphi{(m)}, (s,\varphi{(m)}) = 1 \} S={gs1sφ(m),(s,φ(m))=1}
给 出 m 的 全 部 原 根 . 因 此 , 若 m 有 原 根 , 则 m 有 φ ( φ ( m ) ) 个 原 根 给出m的全部原根.因此,若m有原根,则m有\varphi{(\varphi{(m)})}个原根 m.mmφ(φ(m))

 

求一个原根:

对 p − 1 进 行 质 因 数 分 解 得 到 不 同 的 质 因 子 d 1 , d 2 . . . . d m , 对 于 任 意 的 1 < a < p , 要 判 定 a 是 否 是 模 p 的 原 根 , 只 需 要 检 验 a p − 1 d 1 , a p − 1 d 2 , . . . , a p − 1 d m 这 m 个 数 中 是 否 存 在 一 个 数 在 模 p 意 义 下 与 1 同 余 。 若 存 在 , 则 a 不 是 p 的 原 根 ; 若 不 存 在 , 则 a 是 p 的 原 根 对p-1进行质因数分解得到不同的质因子d_1, d_2....d_m,对于任意的 1 < a < p, 要判定a是否是模p的原根,只需要检验a^{\frac{p-1}{d_1}}, a^{\frac{p-1}{d_2}}, ..., a^{\frac{p-1}{d_m}}这m个数中是否存在一个数在模p意义下与1同余。若存在,则a不是p的原根;若不存在,则a是p的原根 p1d1,d2....dm1<a<p,apad1p1,ad2p1,...,admp1mp1ap;ap

另一种表达形式:
( g , m ) = 1 , 设 p 1 , p 2 , . . . p k 是 φ ( m ) 的 所 有 不 同 素 因 数 , 则 g 是 m 的 原 根 , 当 且 仅 当 对 任 意 的 1 ⩽ i ⩽ k , 都 有 g φ ( m ) p i ≢ 1 ( m o d m ) (g, m)=1,设p_1, p_2,...p_k是\varphi (m)的所有不同素因数,则g是m的原根,当且仅当对任意的1 \leqslant i \leqslant k, 都有g^{\frac{\varphi(m)}{p_i}} \not \equiv 1 \pmod m (g,m)=1p1,p2,...pkφ(m)gm1ikgpiφ(m)1(modm)

 

原根的快速判定方法:

链接

用途:

我 们 发 现 原 根 g 所 有 拥 有 D F T 所 需 单 位 根 ω 的 性 质 , 于 是 我 们 用 g p − 1 n m o d    p 来 代 替 ω n , 理 论 上 就 能 把 复 数 对 应 到 一 个 整 数 , 在 模 p 意 义 下 进 行 快 速 变 换 我们发现原根g所有拥有DFT所需单位根\omega的性质,于是我们用g^{\frac{p-1}{n}} \mod p来代替\omega_n, 理论上就能把复数对应到一个整数,在模p意义下进行快速变换 gDFTωgnp1modpωnp

参考资料:
  • https://oi-wiki.org/math/primitive-root/
  • https://www.cnblogs.com/Dance-Of-Faith/p/9905786.html
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值