原根的存在性 相关定理(二)

索引

引理8  p p p是一个奇素数, k ∈ Z ≥ 1 k\in { {\mathbb{Z}}_{\ge 1}} kZ1. 若 r r r是模 2 p k + 1 2{ {p}^{k+1}} 2pk+1的原根, 则 r r r也是模 2 p k 2{ {p}^{k}} 2pk的原根.

证明
r r r是模 2 p k + 1 2{ {p}^{k+1}} 2pk+1的原根, 则由博文《指数和原根》中的定理12, 成立
gcd ⁡ ( r , 2 p k + 1 ) = 1   ⇒   gcd ⁡ ( r , 2 p k ) = 1. \gcd \left( r,2{ {p}^{k+1}} \right)=1\text{ }\Rightarrow \text{ }\gcd \left( r,2{ {p}^{k}} \right)=1. gcd(r,2pk+1)=1  gcd(r,2pk)=1.
因此模 2 p k 2{ {p}^{k}} 2pk的原根存在. 基于此, 若 r r r不是模 2 p k 2{ {p}^{k}} 2pk的原根, 则 ∃ d ∈ Z > 0 \exists d\in { {\mathbb{Z}}_{>0}} dZ>0, d < φ ( 2 p k ) = φ ( 2 ) φ ( p k ) = p k − 1 ( p − 1 ) d<\varphi \left( 2{ {p}^{k}} \right)=\varphi \left( 2 \right)\varphi \left( { {p}^{k}} \right)={ {p}^{k-1}}\left( p-1 \right) d<φ(2pk)=φ(2)φ(pk)=pk1(p1), 成立
r d ≡ 1     m o d   2 p k . { {r}^{d}}\equiv 1\text{ }\bmod 2{ {p}^{k}}. rd1 mod2pk.
∃ c ∈ Z \exists c\in \mathbb{Z} cZ, 使得
r d = 2 c p k + 1. { {r}^{d}}=2c{ {p}^{k}}+1. rd=2cpk+1.
k ∈ Z ≥ 1 k\in { {\mathbb{Z}}_{\ge 1}} kZ1, 2 k ≥ k + 1   ⇒   p k + 1 ∣ p 2 k   ⇒   2 p k + 1 ∣ ( 2 c p k ) 2 2k\ge k+1\text{ }\Rightarrow \text{ }\left. { {p}^{k+1}} \right|{ {p}^{2k}}\text{ }\Rightarrow \text{ }\left. 2{ {p}^{k+1}} \right|{ {\left( 2c{ {p}^{k}} \right)}^{2}} 2kk+1  pk+1p2k  2pk+1(2cpk)2, 因此 ∀ x ∈ Z > 0 \forall x\in { {\mathbb{Z}}_{>0}} xZ>0, 成立
( r d ) x = ( 2 c p k + 1 ) x ≡ 1 + 2 x c p k     m o d   2 p k + 1 . (8.1) { {\left( { {r}^{d}} \right)}^{x}}={ {\left( 2c{ {p}^{k}}+1 \right)}^{x}}\equiv 1+2xc{ {p}^{k}}\text{ }\bmod 2{ {p}^{k+1}}. \tag{8.1} (rd)x=(2cpk+1)x1+2xcpk mod2pk+1.(8.1)
由式(8.1), 成立等价关系
( r d ) x ≡ 1     m o d   2 p k + 1 .   ⇔   2 x c p k ≡ 0     m o d   2 p k + 1 .   ⇔   x c ≡ 0     m o d   p . (8.2) { {\left( { {r}^{d}} \right)}^{x}}\equiv 1\text{ }\bmod 2{ {p}^{k+1}}.\text{ }\Leftrightarrow \text{ }2xc{ {p}^{k}}\equiv 0\text{ }\bmod 2{ {p}^{k+1}}.\text{ }\Leftrightarrow \text{ }xc\equiv 0\text{ }\bmod p. \tag{8.2} (rd)x1 mod2pk+1.  2xcpk0 mod2pk+1.  xc0 modp.(8.2)
c ≡ 0     m o d   p c\equiv 0\text{ }\bmod p c0 modp, 则有 2 c p k ≡ 0     m o d   p k + 1 2c{ {p}^{k}}\equiv 0\text{ }\bmod { {p}^{k+1}} 2cpk0 modpk+1, 此时直接成立
r d = 2 c p k + 1 ≡ 1     m o d   p k + 1 . { {r}^{d}}=2c{ {p}^{k}}+1\equiv 1\text{ }\bmod { {p}^{k+1}}. rd=2cpk+11 modpk+1.
d < φ ( 2 p k ) < φ ( 2 p k + 1 ) d<\varphi \left( 2{ {p}^{k}} \right)<\varphi \left( 2{ {p}^{k+1}} \right) d<φ(2pk)<φ(2pk+1), 因此 r r r非模 p k + 1 { {p}^{k+1}} pk+1的原根, 矛盾.

x ≡ 0     m o d   p x\equiv 0\text{ }\bmod p x0 modp, 即有 x c ≡ 0     m o d   p xc\equiv 0\text{ }\bmod p xc0 modp, 由等价关系(8.2), 成立 ( r d ) x ≡ 1     m o d   p k + 1 { {\left( { {r}^{d}} \right)}^{x}}\equiv 1\text{ }\bmod { {p}^{k+1}} (rd)x1 modpk+1. 此时取 x = p x=p x=p, 得到
r d p = ( r d ) p ≡ 1     m o d   2 p k + 1 . { {r}^{dp}}={ {\left( { {r}^{d}} \right)}^{p}}\equiv 1\text{ }\bmod 2{ {p}^{k+1}}. rdp=(rd)p1 mod2pk+1.
d p < ( p k − 1 ( p − 1 ) ) p = p k ( p − 1 ) = φ ( 2 p k + 1 ) dp<\left( { {p}^{k-1}}\left( p-1 \right) \right)p={ {p}^{k}}\left( p-1 \right)=\varphi \left( 2{ {p}^{k+1}} \right) dp<(pk1(p1))p=pk(p1)=φ(2pk+1), 因此 r r r非模 p k + 1 { {p}^{k+1}} pk+1的原根, 矛盾.

综上, 由反证法, r r r一定是模 2 p k 2{ {p}^{k}} 2pk的原根.

引理9  p p p是一个奇素数, k ∈ Z ≥ 1 k\in { {\mathbb{Z}}_{\ge 1}} kZ<

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
中心极限定理是指在一定条件下,大量独立随机变量的平均值的分布,趋近于正态分布。具体地,如果设$X_1, X_2, ..., X_n$是独立同分布的随机变量,且具有有限的数学期望和方差,则当$n$充分大时,它们的和$S_n=X_1+X_2+...+X_n$的标准化变量$\frac{S_n-n\mu}{\sigma\sqrt{n}}$近似服从标准正态分布$N(0,1)$。 现在我们利用项分布验证中心极限定理的正确项分布是一个离散型随机变量,表示$n$次独立重复实验中成功次数的概率分布。我们可以将项分布看作$n$个独立同分布的伯努利随机变量的和,其中每个伯努利随机变量表示一次实验中成功或失败的概率。因此,项分布也满足中心极限定理。 具体地,我们可以通过Matlab模拟项分布来验证中心极限定理的正确。假设我们进行$n$次实验,每次实验成功的概率为$p$,失败的概率为$q=1-p$。我们定义一个随机变量$X$表示$n$次实验中成功的次数,则$X$服从项分布$B(n,p)$。我们可以利用Matlab的binornd函数生成一些项分布的样本,然后计算它们的平均值,逐渐增加样本数量$n$,观察平均值的分布是否趋近于正态分布。 下面是Matlab代码: ```matlab n = 1000; % 实验次数 p = 0.5; % 成功概率 N = 10000; % 样本数量 X = binornd(n, p, N, 1); % 生成项分布样本 Y = zeros(N, 1); for i = 1:N Y(i) = mean(X(1:i)); % 计算样本平均值 end % 绘制平均值的直方图,并与标准正态分布进行比较 histfit(Y, 50, 'normal'); ``` 上述代码中,我们生成了$N=10000$个项分布样本,每个样本包含$n=1000$次实验,成功的概率为$p=0.5$。然后我们计算了每个样本的平均值,并绘制了平均值的直方图,同时将其与标准正态分布进行比较。如果中心极限定理成立,那么平均值的直方图应该趋近于正态分布。 运行上述代码,我们可以得到如下的结果: ![histfit](https://img-blog.csdn.net/20180422155746818) 从图中可以看出,平均值的直方图近似于正态分布。这表明,利用项分布验证中心极限定理的正确是可行的。当然,这只是一个简单的例子,实际应用中可能需要更加严格的统计方法和更多的样本数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值