导数与积分总结
前言
其实这些东西大多数都可以在高中数学书中找到......
导函数
导数是什么
导数是用于解决瞬时变化率的。
例如,给定一个物理直线运动的\(s-t\)图,即函数\(f(t) = s\),求某一时刻\(t\)的瞬时速度。
直接求是不可能的(这辈子都不可能的),所以考虑用短时间的平均速度来代替瞬时速度。
即 \(v = Lim_{\Delta t\to 0} \frac{f(t+\Delta t) - f(t)}{\Delta t}\)。
真正把这个函数在坐标轴上画出来可以发现,这个值趋近\(t\)点的斜率。
这个\(v\)即\(f(t)\)在\(t\)点的导数
导数的相关概念
导数\(f'(x)\)即函数\(f(x)\)在\(x\)点的变化速率。
导数\(f'(x)\)在图形上趋近于函数\(f(x)\)在\(x\)点的斜率。
多次取导的结果\(f^{[n]}(x)\)称为\(f(x)\)的\(n\)阶导数。
令\(d = Lim_{\Delta t \to 0} \Delta t\),那么\(f'(x) = \frac{df(x)}{dx}\)。
移项后就变成了常用的积分求导形式:\(df(x) = f'(x) dx\)。
我们称\(f(x)\)为\(f'(x)\)的原函数,\(f'(x)\)为\(f(x)\)在\(x\)点的导数。
常用导数公式
- \(C' = 0\)
- \((x^a)' = ax^{a-1}\)
- $sin'(x) = cos(x) $
- \(cos'(x) = -sin(x)\)
- \((a^x)' = a^x ln(a)\)
- \((e^x)' = e^x\)
- \(ln'(x) = \frac{1}{x}\)
- \(log_y'(x) = \frac{1}{x\ ln(y)}\)
导数的运算法则
- \([cf(x)]' = cf'(x)\)
- \([f(x) + g(x)]' = f'(x) + g'(x)\)
- \([f(x) - g(x)]' = f'(x) - g'(x)\)
- \([f(x)*g(x)\ ]' = f(x)g'(x) + g(x)f'(x)\)
- \([\frac{f(x)}{g(x)}]' = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}\)
- 令\(u = g(x)\ ,\ [f(g(x))]' = f'(u)*g'(x)\)
牛顿迭代法
这是多项式相关内容的推导根基。
求解一个函数\(f(x) = 0\) 的解\(x\),咋解?
画图可以发现,先随便选择一个解\(x_0\),
我们将每次选择点的斜率直线画出,该直线与\(x\)轴的交点\(x\)一定比当前点更接近答案。
斜率直线是啥?导数!
所以\(slope = f'(x_0) = \frac{f(x_0) - f(x)}{x_0 - x}\)。
移项后就得到:
\[x = x_0 - \frac{f(x_0)}{f'(x_0)}\]
不断迭代下去我们就可以找到一个比较精准的解了。
微积分
还是上面那个问题(微分)
一辆车的速度\(v\)随时间\(t\)满足\(v(t) = F(t) = t^3\),其中\(F(t)\)是一个函数。
如何求\(1\)秒之内,这辆车的移动距离?
显然对应到数轴上就是\(F(x)\)与\(x\)轴和\(y\)轴围成图形的面积。
类似人教版高中物理必修一第二章的匀变速运动推导方法,我们来微分。
把一秒分为\([0,\frac{1}{n}]\)、\([\frac{1}{n},\frac{2}{n}]\)、....、\([\frac{n-1}{n},1]\)这样的\(n\)段。
我们近似的设第\(i\)段的速度为这一段的起始点时的速度,即\(\Delta s_i = F(\frac{i-1}{n}) * \frac{1}{n}\)
那么\(\Delta s_i = \frac{(i-1)^3}{n^4}\)。
然后在把\(s_i\)累加起来,\(S = \sum_{i=1}^n s_i = \frac{1}{n^4} \sum_{i=1}^n (i-1)^3\)
有公式\(\sum_{i=0}^{n-1} i^3 = \frac{1}{4} n^2(n+1)^2\),所以\(S = \frac{(n+1)^2}{4n^2} = \frac{1}{4} (1 + \frac{1}{n})^2\)。
显然,\(Lim_{n \to 0}\),所以\(S = \frac{1}{4}(1 + 0) = \frac{1}{4}\),求出了答案。
上面这个过程就是微分。
还有吗?(积分)
现在给出这辆车的\(s-t\)图像(函数\(F(x)\)),这个图像没有任何规律可言。
现在希望知道,在\(1\)秒后,这辆车的移动距离是多少。
报告!我秒了这个问题,\(S = F(1) - F(0)\)!
显然这个结果是正确的,因为这是\(s-t\)图像吗...... 我们来试着用微分思想解决。
还是把时间分为\(n\)段:\([0,\frac{1}{n}]\)、\([\frac{1}{n},\frac{2}{n}]\)、....、\([\frac{n-1}{n},1]\)。
那么答案等于\(S = \sum_{i=1}^n \Delta s_i = \sum_{i=1}^n v(\frac{i-1}{n})\frac{1}{n}\)。
那么\(v(\frac{i-1}{n})\)等于蛤? 仔细回顾了一发导数知识,\(v(\frac{i-1}{n}) = F'(\frac{i-1}{n})\)。
所以说\(S = \frac{1}{n} \sum_{i=1}^n F'(\frac{i-1}{n})\)。当\(Lim_{n\to 0}\)时,\(S = \sum_{i\in[0,1]} F'(i)\)。
那个\(\sum\)太丑了,我们把它记为\(S = \int_{0}^1 F'(x)dx = F(1) - F(0)\)。这个过程就是积分。
微积分的相关概念
微分运算类似于求导,即将原函数的每部分进行求导。
积分运算为求导的逆运算,\(f(x)\)的积分结果为其原函数\(F(x)\)。
这个运算叫做不定积分,记为\(F(x) = \int f(x) dx\)。
在积分中,记\(f(r) - f(l) = |^r_l f(x)\)
定积分则是求解一个连续区间的\(f(x)\)和,记为\(F(x) = \int_{l}^r f(x)dx\)。
上面的积分的例子中,得到了积分中最重要的牛顿-莱布尼兹公式:
\[若F'(x) = f(x)\ \ ,\ \ 则\int_l^r f(x)dx = |^r_l F(x) = F(r) - F(l)\]
所以说如果要求解\(f(x)\)的定积分,
那么只需要找到它的原函数\(F(x)\)即可,而找原函数又可以用不定积分完成。
常用积分公式
- \(\int c\ dx= cx + C\)
- \(\int x^a\ dx = \frac{x^{a+1}}{a+1} + C\)
- \(\int \frac{1}{x}\ dx = ln(|x|) + C\)
- \(\int e^x\ dx = e^x + C\)
- \(\int a^x\ dx = \frac{a^x}{ln(a)} + C\)
- \(\int cos(x)\ dx = sin(x) + C\)
- \(\int sin(x)\ dx = -cos(x) + C\)
积分运算法则
- \(\int f(cx)dx = \int \frac{1}{c}f(cx)dcx\)
- \(\int cf(x) = c\int f(x)\)
- \(\int [f(x)+g(x)] = \int f(x) + \int g(x)\)
- \(\int [f(x)-g(x)] = \int f(x) - \int g(x)\)
复合函数的积分:
复合函数由于没有基本公式,所以无法进行直接积分。
一般来说,我们需要将复合函数化成基本函数,过程中注意积分对象\(dx\)的变化。
举个例子:求\(\int cos^2(mx)dx\)
\(\int cos^2(mx)dx = \int cos^2(x) \frac{1}{m}dmx = \frac{1}{m}\int cos^2(mx)dmx\)
我们先通过提出系数,使积分对象与积分函数变量一致。
\(\frac{1}{m}\int cos^2(mx)dmx = \frac{1}{m} \int \frac{cos(2mx) + 1}{2} dmx = \frac{1}{2m} \int cos(2mx) dmx + \frac{1}{2} x\)
现在积分那个部分是有基本公式的了,所以
\(\frac{1}{2m} \int cos(2mx) dmx = \frac{1}{4m} \int cos(2mx)\ d2mx = \frac{1}{4m} sin(2mx)\)。
所以综上,原式\(= \frac{1}{4m} sin(2mx) + \frac{1}{2} x\),然后就化完啦!