一类dp的网格模型

关于形如\(f_{i,j} = \sum_{t=1}^{|w|}\sum_{k=1}^{|v|}f_{i+w_t,j+v_k}\),其中\(w_t,v_k\)为一个定值的\(dp\)转移。
可以考虑放到坐标上,画出其转移路线,然后考虑组合意义。

Section1

\(\sum_{i,j} \binom{a_i+b_i+a_j+b_j}{a_i+a_j}\),其中\(a,b\leq 4000,n\leq 10^6\)

\(\binom{a_i+b_i+a_j+b_j}{a_i+a_j}\)等价于从\((-a_i,-b_i)\)走到\((a_j,b_j)\)的方案数。
建图后直接从左下往右上暴力\(dp\)出解。

Section2

定义一个\(n\)的排列合法,当且仅当:设\(n\)的位置为\(x\),有:
\[p_1<p_2<p_3....<p_{x-1}<p_x>p_{x+1}>....>p_{n-1}>p_n\]
\(m\)个限制\((pos,v)\),形如\(p_{pos} = v\)
数据范围:\(m\leq n\leq 10^5\),求合法排列数。

考虑从小往大放,设\(f_{i,j}\)表示放完\(1,2...i\),左侧放了\(j\)个。
转移方程:\(f_{i,j} =f_{i-1,j-1} +f_{i-1,j}\)
初始在\((0,0)\)每次放一个相当于移动\((+1,0)\)\((+1,+1)\)
限制相当于限制\(f_{v,j}\)必须通过特定方向到达该点。
而每一列最多就两个特殊点,直接对特殊点进行\(dp\),最后一列特殊处理一下即可。

Section3

[JLOI2015]骗我呢

考虑突变的位置,设\(f_{i,j}\)表示做到第\(i\)行,该行突变位置为\(j\)
有:\(f_{i,j} = f_{i,j-1} +f_{i-1,j+1}\),其中\(f_{i,0} = f_{i-1,0}\)
画出转移路线,把转移路线拽直可以发现,问题转化为:
\((0,0)\)出发,到达\((n+m,n)\),且不经过\(y=x+2\)\(y=x-(m+1)\)的方案数u。
容斥计算。

Section4

[NOI2018]冒泡排序

\(f_{i,j}\)表示还剩下\(i\)个要放,前面的最大值为\(j\)的方案数。
显然当前点要么放比\(j\)大的数,要么放还没放的数中最下的那个。
由于我们是逆推所以:\(f_{i,j} = f_{i-1,j} + \sum_{k=j+1}^{n} f_{i-1,k} = \sum_{k=j}^n f_{i-1,k}\)
考虑统计答案,枚举在哪个点\(i\)开始处于自由态。
由于不会放\(a_i\),而\(a_i\leq max_{pre}\),所以一定只能放比\(max_{pre}\)大的数。
此时的方案数为\(\sum_{k=max_{pre}+1}^n f_{n-i,k} = f_{n-i+1,max_{pre}+1}\)
唯一的问题变为如何快速处理\(f\)
显然合法的\(f_{i,j}\)需要满足\(j\ge n-i\),画出转移路线图,问题转化为:
\((0,n)\)出发,不经过\(y=-x+(n-1)\)到达\((i,j)\)的方案数。
这是经典问题,答案为 \(\binom{i+n-j}{i} - \binom{i+n-j}{i+1}\)

转载于:https://www.cnblogs.com/GuessYCB/p/10228340.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值