求​​​​​​​​​​​​​​​​​​​​​​​​​​​​n维空间中点到超平面的距离公式推导

问题:假设我们知道空间中的一个超平面S:,和中的一个点,(是n维列向量),如何求得到超平面S的距离? 首先给出距离公式: 推导(1): 首先,对于向量,我们知道。而在上的投影长度为。 对于超平面S,是超平面的法向量,我们在超平面上取一点,向量在上的投影长度...

2019-03-29 13:33:52

阅读数 51

评论数 0

Visual Studio 同时配置Qt 32位和64位版本开发环境

        本文章旨在给使用Visual Studio开发Qt程序的开发人员提供一套同时构建32位版本Qt和64位版本Qt开发环境的方案,因为我自己也遇到了这个问题,国内的网上好像并没有好的解决方案,希望能够帮到有同样需求的开发人员。         Qt有32位版本的,同样也有64位版本的...

2018-11-06 12:05:41

阅读数 1722

评论数 0

求解3维空间中点到直线的距离

        最近在工程上遇到一个比较实际也比较常见的问题,就是求三维空间上任意一个点b到某条直线uv(u,v是直线上的两个点)的距离。如果用几何解法,思路:求解过b且垂直于直线uv的直线方程,两个直线方程求焦点a,计算点a到点b的欧式距离。这种解法十分繁琐,且公式推导十分麻烦。       ...

2018-10-10 10:20:44

阅读数 7647

评论数 2

改进的格拉姆-施密特正交化(modified Gram-Schmidt Process)

        最近在重新学习线性代数,学习的教材是MIT Gilbert Strang 教授的《INTRODUCTION TO LINEAR ALGEBRA》,在第4.4章节格拉姆-施密特正交化时,书中章节末尾介绍了一种改进的格拉姆-施密特正交化方法,但书中给出了公式,省略了很多细节,给学习理解...

2018-10-07 13:33:59

阅读数 1874

评论数 0

镜像矩阵(Reflection)

        镜像(反射)矩阵是n维空间中的沿n-1维平面的一种矩阵变换,常见的应用场景是在2维空间图像处理、3维空间物体场景变换。先直观看看镜像变换的效果:                                                           直观的感受了镜像...

2018-09-28 19:39:42

阅读数 1869

评论数 0

Android系统添加Feature方法

介绍 应用程序或者系统框架中可以通过getPackageManager().hasSystemFeature(String string)判断系统是否支持特定的模块功能,而运行不同的代码逻辑分支。比如可以通过getPackageManager().hasSystemFeature(&qu...

2019-07-25 21:26:37

阅读数 10

评论数 0

Android多用户适配

构建可感知多用户的应用 对于支持多用户的设备,设备上的应用在必要时需要感知不同的用户。 某些应用需要将一些组件(服务)作为单例运行,并且可以接受来自任意用户的请求。android系统目前仅支持系统应用使用此功能。 系统应用这样做的优势在于:节约资源、判定各个用户之间的一个或多个共享资源、通过...

2019-07-13 11:35:28

阅读数 15

评论数 0

SettingsProvider源码分析(Android 9.0)

简介 SettingsProvider由Android系统框架提供,包含全局、系统级别的用户偏好设置,系统中的setting应用和它存在十分紧密的关系。SettingsProvider作为一个系统apk,随框架一起编译,在目录树种的位置:"frameworks\base\pac...

2019-07-13 11:29:35

阅读数 27

评论数 0

JAVA 编程思想-一切都是对象

对C++熟悉的同学对对象应该不陌生,区别于C++的是,在java中所有的程序都是基于对象的,就连main方法都是包裹在对象中,而C++处于兼容C语言的原因,在它的世界里对象和过程是并存的,你可以创建不属于任何对象的方法和变量,但在java中你却不能这样做。 ...

2019-06-23 11:50:39

阅读数 18

评论数 0

Java编程思想-对象导论

第一章,对象导论主要介绍一些概念性的知识,有C/C++基础的同学浏览带过ok,为了学习的系统完整性,还是单独以一篇文章总结下本章的知识点,见下面的思维导图。 ...

2019-06-12 00:44:58

阅读数 28

评论数 0

Java编程思想思维导图

从大学到研究生毕业以来,工作上用得最多的还是C和C++,虽然偶尔也会涉足到java、python这些语言,但至始至终都么有系统的做过java项目。最近,由于切换工作领域的原因,暂时编程语言切换到java,对我来讲,刚好有个机会对java整个整个生态和技术进行一个系统的学习,接下来的2-3个月时间,...

2019-06-11 00:29:04

阅读数 71

评论数 0

Ubuntu LAMP搭建网站开发环境

LAMP - 百科 在Ubuntu下安装LAMP: > sudo apt-get install lamp-server^ 上述命令执行完成之后,在Ubuntu系统下就已经完成了Apache+MySQL+PHP的安装,并且服务已经启动,记住在安装过程中会要求你输入MySQL r...

2019-05-11 22:09:49

阅读数 31

评论数 0

扫雷外挂

        最近在了解Windows逆向工程的原理,作为入门,写一个最基础的扫雷外挂,并剖析这个外挂的基础原理,部分程序参照和借用网友的实现。         参考网友资料:https://www.52pojie.cn/thread-536250-1-1.html              ...

2018-11-01 11:17:23

阅读数 2969

评论数 0

正交向量与子空间-线性代数课时14(MIT Linear Algebra , Gilbert Strang)

         这是Strang教授的第十四讲,讲解的内容是正交的概念、四个子空间的正交关系,并在四个子空间的正交关系上解释Ax=b的解在四个子空间的映射关系,更进一步理解Ax=b,另外稍微提及了当Ax=b无解的时候怎样求解? 正交概念         两个向量v和w正交意思是向量v垂直于w...

2018-10-26 17:56:19

阅读数 91

评论数 0

图和网络-线性代数课时12(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第十二讲,讲解的内容是关于线性代数的一个重要应用:图和网络,理论结合实践,展示数学在工程实践中的重要地位,学完本节课,你会发现很多物理系统,比如力学系统、电学系统,生物学系统,经济学系统,计算机科学领域里的系统,...,都可以用线性代数建模求解。 有向图和关...

2018-10-24 14:03:04

阅读数 180

评论数 0

矩阵空间、秩1矩阵和小世界图-线性代数课时11(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第十一讲,讲解的内容是矩矩阵空间(一个新的“向量”空间)的一组基,秩1矩阵的特殊性和小世界图(small world graphs),小世界图引出图论与线性代数的关系。 矩阵空间         矩阵空间满足向量空间的定义,对加法和数乘封闭。比如所有的3x...

2018-10-23 11:01:42

阅读数 136

评论数 0

四个基本子空间-线性代数课时10(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第十讲,讲解的内容是矩阵的4个基本子空间,包括前面介绍过的列空间、零空间还有另外两个子空间,理解这4个基本子空间对学习线性代数十分重要。 四个基本子空间         对于矩阵A,它的四个基本子空间指的是:         1. 列空间   ,在内; ...

2018-10-22 17:45:12

阅读数 84

评论数 0

线性相关性、基、维数-线性代数课时9(MIT Linear Algebra , Gilbert Strang)

         这是Strang教授的第九讲,讲解的内容是线性相关性、基的概念和维数的概念。 背景知识         对于未知数个数大于方程个数的线性方程组,我们知道对于Ax=0一定有非零解,原因是在消元过程中一定存在自由变量。 线性相关性         定义1:对于向量,如果当且仅...

2018-10-22 11:45:55

阅读数 86

评论数 2

求解Ax=b:可解性和解的结构-线性代数课时8(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第八讲,上一讲讲了求解Ax=0,也就是求解矩阵的零空间,这节课将讲解求解完整的线性方程组Ax=b,以及它解的各种可能性。 消元法求解Ax=b示例          上一讲求解了Ax=0,消元法将问题Ax=0转换为Rx=0,R中的自由变量给出了Ax=0的特解...

2018-10-15 12:30:40

阅读数 84

评论数 0

求解Ax=0:主变量,特解-线性代数课时7(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第七讲,这节课是一个转折,它从定义转向算法,这节课主要内容是求解矩阵的零空间,通过一个例子讲解了通过消元法求解Ax=0,并在贯通例子的过程中介绍了几个新的概念:特解、主变量、自由变量、主列、自由列、阶梯矩阵U和简化的行阶梯形式,另外讲解了矩阵秩的概念。 特解...

2018-10-13 19:40:09

阅读数 210

评论数 0

提示
确定要删除当前文章?
取消 删除