给定
n
个非负整数表示每个宽度为1
的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
我们看到题的第一步,永远是对入参进行判断
public int trap(int[] height) {
if (height == null) {
return 0;
}
...
}
但是我们想想看,接雨水是不是和往桶里倒水的问题很像,倒入水的体积往往是由桶两边较低的那个高度决定的,这个问题亦是如此
由我们分析可知当数组的长度小于3的时候,是不可能接到雨水的,所以我们在判断入参条件的时候就可以这样写
public int trap(int[] height) {
if (height == null || height.length < 3) {
return 0;
}
...
}
刚才我们已经分析过了,一个位置的存储量只和最短的那一边有关系,边越长,我们固定位置上的存储量就越多,所以我们可以遍历每个位置,分别计算出各个位置上的存储量,再最后求和就完美的解决了本题
int count = 0;
for (int i = 1; i < height.length; i++) {
//找左边的最高值
int lMax = 0;
for (int j = 0; j < i; j++) {
lMax = Math.max(lMax, height[j]);
}
//找到右边的最高值
int rMax = 0;
for (int j = i + 1; j < height.length; j++) {
rMax = Math.max(rMax, height[j]);
}
}
好了,这样我们相对位置上的两边最高的边已经求出来了,只不过现在还存一个问题,如果,当前位置的高度如果大于较小的那边高度的话,是否还可有存储水量呢?
所以当前位置的高度如果大于两边最长的相对较小的边的高度,则不能进行存储水量,所以我们再对我们的代码进行完善
int count = 0;
for (int i = 1; i < height.length; i++) {
//找左边的最高值
int lMax = 0;
for (int j = 0; j < i; j++) {
lMax = Math.max(lMax, height[j]);
}
//找到右边的最高值
int rMax = 0;
for (int j = i + 1; j < height.length; j++) {
rMax = Math.max(rMax, height[j]);
}
if (Math.min(lMax, rMax) - height[i] > 0) {
count += Math.min(lMax, rMax) - height[i];
}
}
这就完成了我们所谓hard题的接雨水问题了,这个题面试中还是经常问的,希望大家透析原理,面试无压力,下面给大家奉上整个代码,供大家参考借鉴
public int trap(int[] height) {
if (height == null || height.length < 3) {
return 0;
}
int count = 0;
for (int i = 1; i < height.length; i++) {
//找左边的最高值
int lMax = 0;
for (int j = 0; j < i; j++) {
lMax = Math.max(lMax, height[j]);
}
//找到右边的最高值
int rMax = 0;
for (int j = i + 1; j < height.length; j++) {
rMax = Math.max(rMax, height[j]);
}
if (Math.min(lMax, rMax) - height[i] > 0) {
count += Math.min(lMax, rMax) - height[i];
}
}
return count;
}
这种解法由于太暴力了,面试官肯定不想看到这种比较笨的办法,下面给大家介绍一种比较容易理解的双指针
说是双指针也不是真正意义上的双指针,它是分别维护了一个当前的左右指针,还有左右的最高指针
- 因为最左边的和最右边的肯定是不能装水,所以我们把这两个设为左右最高,那么当前的左右指针就会从1~n-2开始
int len = height.length;
int left = 1;
int right = len - 2;
int left_max = 0;
int right_max = len - 1;
- 当左边的最高小于右边的最高,就说明当前的值的存水量只与左边的最高有关系,如果左边的最高 大于当前值,那么当前位置的存水量一定是
res += height[left_max] - height[left];
- 如果左边的最高值小于当前位置的高度,说明原来的最高不是真的最高,然后对最高进行更新
left_max = left;
- 然后继续向后比较下一个位置
left++;
左边的代码如下:
if(height[left_max] < height[right_max]){
if(height[left_max] > height[left]){
res += height[left_max] - height[left];
}else{
left_max = left;
}
left++;}
右边的比较方法和左边的方法一致,这里就直接给出代码:
if(height[left_max] >= height[right_max]){
if(height[right_max] > height[right]){
res += height[right_max] - height[right];
}else{
right_max = right;
}
right--;}
然后将两者进行合并就可以得出最后的结果
public int trap(int[] height) {
//获取数组的长度
int len = height.length;
//当前左
int left = 1;
//当前右
int right = len - 2;
//左最高
int left_max = 0;
//右最高
int right_max = len - 1;
int res = 0;
while(left <= right){
//比较
if(height[left_max] < height[right_max]){
if(height[left_max] > height[left]){
res += height[left_max] - height[left];
}else{
left_max = left;
}
left++;
}else{
if(height[right_max] > height[right]){
res += height[right_max] - height[right];
}else{
right_max = right;
}
right--;
}
}
return res;
}
下面再介绍一种按照不同的双指针思想求解问题
- 对于某一个位置的i来说,我们能否接到这个位置上的雨水,取决于i左右两侧的最大值(left_max,right_max)是否比height[i]大,只有当i左右两侧的最大值都比height[i]大时,才能接i上的雨水,数量为min(left_max,right_max)-height[i],可以得到结论:限制当前位置接雨水的条件是其左右两侧的最大值中的较小值min(left_max,right_max);
- 对于left、right两个指针,left从左向右移动,right从右向左移动,对于left来说,left_max是真实可信的,因为left_max是left亲自走出来的,但是right_max对于left却是不可信的,因为left不知道从height[left]到height[right]之间是否其他的数大于right_max,同样,对于right来说,left_max也是不可信的,所以这里可以得到结论:对于左指针left,它右侧的真实的最大值>=right_max,对于右指针right,它左侧的真实最大值>=left_max
- 当left_max<right_max的时候,左指针的位置是否能接雨水就已经可以确定了,当left_max<=right_max的时候,右指针的位置是否能接雨水就已经可以确定了
public int trap(int[] height) {
int len = height.length;
int left = 0;
int right = len - 1;
int left_max = 0;
int right_max = 0;
int res = 0;
//当left==right的时候,他们两指向的一定是数组中最大的那个数,是不能进行解雨水的,所以
//这里left<right也可以ac
while(left <= right){
left_max=Math.max(left_max,height[left]);
right_max=Math.max(right_max,height[right]);
if(left_max<right_max){
res+=left_max-height[left];
left++;
}else{
res+=right_max-height[right];
right--;
}
}
return res;
}