线性代数——第一章 行列式

1. 二阶与三阶行列式

1.1 二阶行列式

1.1.1  定义:

由二行二列四元素所成的算式,记作\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=(+a_{11} *a_{22} )+(-a_{12} *a_{21} )=a_{11} *a_{22} -a_{12} *a_{21};

例如:\begin{vmatrix} 3 & 2 \\ 8 & 7 \end{vmatrix}=3*7-2*8=5\begin{vmatrix} -3 & 2 \\ 8 & 7 \end{vmatrix}=-3*7-2*8=-37.

1.1.2  注意:

1. 两项相加 

2. 主为正号,副为负号

3. a_{ij} : 一般,i为行标,j为列标,为第(i,j)

4. 不同行不同列相乘

5. 习惯:先写上行,再写下行

此类亦可:

\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}=b_{1}*a_{22}-a_{12}*b_{2}

1.1.3 二阶行列式的意义
1.1.3.1 代数意义(求二元线性方程组)

a_{11}x_{1}+a_{12}x_{2}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}=b_{2}  , 消 x_{2} ,则可得

(a_{11}a_{22}-a_{12}a_{21})x_{1}=b_{1}a_{22}-a_{12}b_{2}  若 a_{11}a_{22}-a_{12}a_{21}\neq 0 ,

x_{1}=\frac{b_{1}a_{22}-a_{12}b_{2}}{a_{11}a_{22}-a_{12}a_{21}}=\frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}   

同理,消 x_{1} 得 x_{2}=\frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}  , 规定 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=D : 为系数行列式

且 \begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}=D_{1} ,\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}=D_{2},则 x_{1}=\frac{D_{1}}{D},x_{2}=\frac{D_{2}}{D} , 此为克莱姆法则

例1:3x_{1}-2x_{2}=12 \\2x_{1}+x_{2}=1 其有且仅有一个解

注意:重点观查D是否为0(行列成比例时,即 \begin{vmatrix} a_{11} & a_{12} \\ ka_{21} & ka_{22} \end{vmatrix}=0;

例2:2x_{1}+x_{2}=3 \\4x_{1}+2x_{2}=5  ,知D=\begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix}=0,可易知无解;(两直线平行)

例3:2x_{1}+x_{2}=3 \\4x_{1}+2x_{2}=6,可得有无数解。(两直线重合)

1.1.3.2 几何意义(二维空间中平行四边形面积)

\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=a_{11} *a_{22} -a_{12} *a_{21}

令 \vec{m}=(a_{11},a_{12}),\left | \vec{m} \right |=m\\ \vec{n}= (a_{21},a_{22}),\left | \vec{n} \right |=n, 则在直角坐标系中,有

S=m*h\\=m*n*\sin (\beta -\alpha )\\=m*n*(\sin\beta \cos\alpha - \cos\beta \sin\alpha )\\=m*\cos\alpha *n\sin\beta -m*\sin\alpha *n\cos \beta \\=a_{11}a_{22}-a_{12}a_{21}\\=\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} 

\begin{vmatrix} a_{11} & a_{12} \\ ka_{21} & ka_{22} \end{vmatrix}=0,则如图

1.2 三阶行列式

1.2.1 定义

三行三列9个元素构成的算式,记作:\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}.

计算方法如图:

其等于:

a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}+(-a_{13}a_{22}a_{31})+(-a_{12}a_{21}a_{33})+(-a_{11}a_{23}a_{32})

例1:\begin{vmatrix} 5 & 2&1 \\ 1 & 2&5\\34&1&34 \end{vmatrix}

可以计算得:340+340+1+(-68)+(-68)+(-25)=520

(挺有趣的一个东西)

例2:

①:\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ 0 & a_{22} &a_{23}\\0&0&a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}

②:\begin{vmatrix} a_{11} & 0&0\\ a_{21} & a_{22} &0\\a_{31}&a_{32}&a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}

③:\begin{vmatrix} a_{11} & 0&0\\ 0 & a_{22} &0\\0&0&a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}

1.2.2 注意

1. 对角线法则,主为正号,副为负号

2. 6项相加

3. 先写上行(正),再写下行(负)

4. 不同行不同列相乘

5. 计算方法于此处特定适用(对角线法则仅适用于二阶与三阶,高阶有其它的方法)

1.2.3 三阶行列式的意义
1.2.3.1 代数意义(解三元线性方程组)

x_{1}-x_{2}-x_{3}=2\\ 2x_{1}-x_{2}-3x_{3}=1\\ 3x_{1}+2x_{2}-5x_{3}=0, 且 D=\begin{vmatrix} 1 & -1 & -1\\ 2 & -1 &-3\\3 & 2 & -5 \end{vmatrix}=3\neq 0

D_{1}=\begin{vmatrix} 2 & -1 & -1\\ 1 & -1 &-3\\0 & 2 & -5 \end{vmatrix}=15D_{2}=\begin{vmatrix} 1 & 2 & -1\\ 2 & 1 &-3\\3 & 0& -5 \end{vmatrix}=0D_{3}=\begin{vmatrix} 1 & -1 & 2\\ 2 & -1 &1\\3 & 2 & 0 \end{vmatrix}=9

所以x_{1}=\frac{D_{1}}{D}=5\\ x_{2}=\frac{D_{2}}{D}=0\\ x_{3}=\frac{D_{3}}{D}=3.

1.2.3.2 几何意义 :三维空间中平行六面体的体积

令 \vec{m}=(a_{11},a_{12},a_{13})\\ \vec{n}=(a_{21},a_{22},a_{23})\\ \vec{t}=(a_{31},a_{32},a_{33})V=\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix},则可知为向量的混合积(三阶行列式)

(\vec{m}\cdot \vec{n})\times \vec{t}=V

扩展:

1. 二阶行列式:二维空间中平行四边形面积(若两个二维向量共线,则S=0,可以有两行对应成比例这个条件去导致)

2. 三阶行列式:三维空间中平行六面体的体积(若三个三维向量共面,则V=0,可以有两行对应成比例这个条件去导致)

3. 四阶行列式:四维空间中平行八面体的 “ 体积 ” (若四个四维向量共面,则{}''V{}''=0,可以有两行对应成比例这个条件去导致)

这体现了其线性相关!

(一些说明:

①:有一阶行列式,有 \begin{vmatrix} a \end{vmatrix}=a,\begin{vmatrix} -a \end{vmatrix}=-a,注意与绝对值的区别(若出现,必有说明!)

②:行列式的行与列的数目是相同的,在矩阵中,其行与列的数目可以不同!)

2. 全排列与对换

2.1 排列的相关概念

2.1.1 排列

由 n 个数1,2,3,......,n 组成的一个有序数组为一个 n 级排列。

例:1,2,3可构成 6 个 3 级排列,如:123,132,213,231,312,321.

故 n 个数可构成 n! 个

(一些说明:

所构成的排列不可缺项,即如:125 这样,必须为12345这5个数字的任意组合。)

2.1.2 顺序

前小后大为顺序;前大后小为逆序。

2.1.3 一个逆序

一对逆序的数字即为一个逆序

例1:4321543构成一个逆序,同理有:42,41,32,31,21,故共有 6 个逆序。

例2:76814235,共有18个

2.1.4 逆序表

排列的逆序的总数。

找寻方法:①:“ 后面几个小 ”   ②:“ 前面几个大 ”

例:对例1有:  ① :3+2+1+0+0=6; ②:0+3+2+1+0=6.

2.1.5 奇偶排列

逆序表为奇数\rightarrow奇排序;逆序表为偶数\rightarrow偶排列

2.1.6 标准(自然)排列

即:123......n

知其N(123......n)=0 (N为逆序表,亦可用 t , \tau 等)

若为N\left [ n(n-1)(n-2)....321 \right ]=\frac{n(n-1)}{2}

例1:已知 n 个数组成的排列x_{1}x_{2}x_{3}...x_{n-2}x_{n-1}x_{n}逆序表为k,求x_{n}x_{n-1}x_{n-2}...x_{3}x_{2}x_{1}的逆序表。

解:方法A:后面几个小:对于x_{1}x_{2}x_{3}...x_{n-2}x_{n-1}x_{n}有:

x_{1}后面比x_{1}小的有k_{1}个,则同理知:x_{2}.....k_{2}个 , x_{3}.....k_{3}个 , ...... , x_{n-1}.....k_{n-1}个 , x_{n}.....k_{n}个 , 则共有 k_{1}+k_{2}+k_{3}+.....+k_{n-1}+k_{n}=k ; 

方法B:前面几个大:对于x_{n}x_{n-1}x_{n-2}...x_{3}x_{2}x_{1}有:

x_{1}前面比x_{1}大的有(n-1)-k_{1}个 , x_{2}前面比x_{2}大的有(n-2)-k_{2}个 , ...... , x_{n-1}前面比x_{n-1}大的有\left [n- (n-1)-k_{n-1} \right ]个 , x_{n}前面比x_{n}大的有\left [ (n-n)-k_{n} \right ]个;

则共有:(n-1)+(n-2)+(n-3)+....+1+0-(k_{1}+k_{2}+....+k_{n})=\frac{n(n-1)}{2}-k

例2:用排列76814235验证例一结论。

解:前面几个大:0+1+0+3+3+4+4+3=18=k ,

知由结论,对于53241867 ,有N(53241867)=\frac{8*7}{2}-k=10 ,

由后面几个小,得:4+2+1+1+0+2+0+0=10 ,故得证。

2.2 对换相关概念

2.2.1 对换

排列中任意两数交换位置,其余不变。

2.2.2 相邻对换

相邻两数交换位置,其余不变。

2.2.3 定理一

排列经过一次对换,奇偶性改变。

N(12534)=0+0+0+1+1=2 , 则N(14532)=0+0+0+2+3=5

推论:奇(偶)排列通过对换的方式变成标准排列,需要对换奇(偶)数次。

如:123456\Leftrightarrow 126453\Leftrightarrow 426153

从原偶(标准)\Leftrightarrow 奇 \Leftrightarrow 偶 ,故。

3. n 阶行列式定义

3.1. 回顾

3.1.1.

 \begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix} 的值为:

a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}+(-a_{13}a_{22}a_{31})+(-a_{12}a_{21}a_{33})+(-a_{11}a_{23}a_{32})=\sum(-1)^{N}a_{1p1}a_{2p2}a_{3p3}

p1p2p3 为1,2,3的所有排列;Np1p2p3的逆序表。

可以观察到:行标排列:123(自然排列),列标排列:有"+"的那一行,观察到:N(123)=0,N(231)=2,N(312)=2,其逆序表皆为偶数,而有 "— "的那一行,观察到:N(321)=3,N(213)=1,N(132)=1,其逆序表皆为奇数。

3.1.2.

 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=(+a_{11} *a_{22} )+(-a_{12} *a_{21} )=a_{11} *a_{22} -a_{12} *a_{21}=\sum (-1)^{N}a_{1p1}a_{2p2}

p1p2 为1,2的所有排列;Np1p2的逆序表。

可以观察到:行标排列:12(自然排列),列标排列:有"+"的那一行,观察到:N(12)=0

其逆序表皆为偶数,而有 "— "的那一行,观察到:N(21)=1,其逆序表皆为奇数。

3.2. n 阶行列式定义(按行定义)

D=\begin{vmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} &...&a_{2n}\\...&...&...&...\\a_{n1} & a_{n2} &...& a_{nn} \end{vmatrix}=\sum (-1)^{N}a_{1p1}a_{2p2}...a_{npn}=det(a_{ij})

其中p1p2p3...pn1,2,3,...,n的所有排列,N为它的逆序表,且共有n! 个排列

例:判断4阶行列式某些项前的符号

D=\begin{vmatrix} a_{11} & a_{12} & a_{13}& a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41} & a_{42} &a_{43}& a_{44} \end{vmatrix}

1. a_{13}a_{22}a_{34}a_{41}

2. a_{11}a_{22}a_{33}a_{44}

3. a_{13}a_{24}a_{32}a_{41}

4. a_{14}a_{23}a_{32}a_{41}

解:①:+,②:-,③:-,④:+。

3.3 特殊行列式的计算

3.3.1 主对角线行列式

\begin{vmatrix} a_{11} & 0 & 0& ...&0 \\ 0 & a_{22} &0&...&0 \\0&0&a_{33}&...&0 \\... & ... &...& ...&0 \\0&0&0&...&a_{nn} \end{vmatrix}=+a_{11}a_{22}a_{33}...a_{nn},共 n! 项。

主上三角:

\begin{vmatrix} a_{11} & a_{12} & a_{13}& ...&a_{1n} \\ 0 & a_{22} &a_{23}&...&a_{2n} \\0&0&a_{33}&...&a_{3n} \\... & ... &...& ...&a_{(n-1)n} \\0&0&0&...&a_{nn} \end{vmatrix}=+a_{11}a_{22}a_{33}...a_{nn}

主下三角:

\begin{vmatrix} a_{11} & 0 & 0& ...&0 \\ a_{21}& a_{22} &0&...&0 \\a_{31}&a_{32}&a_{33}&...&0 \\... & ... &...& ...&0 \\a_{n1}&a_{n2}&a_{n3}&...&a_{nn} \end{vmatrix}=+a_{11}a_{22}a_{33}...a_{nn}

3.3.2 副对角线行列式

D=\begin{vmatrix} 0 & ... & 0& a_{1n}\\ 0 & ... &a_{2(n-1)}&0\\...&...&...&...\\a_{n1} & ... &0& 0 \end{vmatrix}=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2(n-1)}...a_{n1}

其中:N(n(n-1)(n-2)...321)=\frac{n(n-1)}{2}

同理副上三角:

\begin{vmatrix} 0 & ... & 0& a_{1n}\\ 0 & ... &a_{2(n-1)}&a_{2n}\\...&...&...&...\\a_{n1} & ... &a_{n(n-1)}& a_{nn} \end{vmatrix}=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2(n-1)}...a_{n1}

副下三角:

\begin{vmatrix} a_{11} & ... & a_{1(n-1)} & a_{1n}\\ a_{21} & ... &a_{2(n-1)}&0\\...&...&...&...\\a_{n1} & ... &0& 0 \end{vmatrix}=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2(n-1)}...a_{n1}

例1:\begin{vmatrix} a_{11} & a_{12} & a_{13}& a_{14}&a_{15} \\ a_{21} & a_{22} &a_{23}&a_{24}&a_{25} \\a_{31}&a_{32}&0&0&0\\a_{41} & a_{42}&0& 0&0 \\a_{51}&a_{52}&0&0&0 \end{vmatrix}=0

例2:证明D=\begin{vmatrix} a_{11} & a_{12} & 0& 0\\ a_{21} & a_{22} &0&0\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41} & a_{42} &a_{43}& a_{44} \end{vmatrix}=\begin{vmatrix} a_{11} & a_{12} \\ a_{21}& a_{22} \end{vmatrix}\begin{vmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{vmatrix}

证明:将其展开,后提公因式再变换即可。

展开得:+a_{11}a_{22}a_{33}a_{44}-a_{11}a_{22}a_{34}a_{43}-a_{12}a_{21}a_{33}a_{44}+a_{12}a_{21}a_{34}a_{43}=D

且变换得:D=( a_{11}a_{22}-a_{12}a_{21})(a_{33}a_{44}-a_{34}a_{43})=\begin{vmatrix} a_{11} & a_{12} \\ a_{21}& a_{22} \end{vmatrix}\begin{vmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{vmatrix}

3.4. n 阶行列式其它形式的定义

3.4.1 按列定义

D=\begin{vmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} &...&a_{2n}\\...&...&...&...\\a_{n1} & a_{n2} &...& a_{nn} \end{vmatrix}=\sum (-1)^{N}a_{P_{1}1}a_{P_{2}2}...a_{P_{n}n}

其中p1p2p3...pn1,2,3,...,n的所有排列,N为它的逆序表,且共有n! 个排列

3.4.2 普通定义

D=\begin{vmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} &...&a_{2n}\\...&...&...&...\\a_{n1} & a_{n2} &...& a_{nn} \end{vmatrix}=\sum (-1)^{N_{1}+N_{2}}a_{i_{1}j_{1}}a_{i_{2}j_{2}}...a_{i_{n}i_{n}}

其中i_{1}i_{2}...i_{n}1,2,3...n的所有排列,N_{1}为它的逆序表;

j_{1}j_{2}...j_{n}1,2,3...n的所有排列,N_{2}为它的逆序表;

例1:某四阶行列式某项为(-1)^{?}a_{21}a_{4m}a_{t3}a_{n2},假设元素下标为该元素在行列式中的真实位置,讨论该项前的符号。

解:行排序:24tn;N_{1}=(1432)=3

列排序1m32。则知m=4,现在则有①:t=1,n=3;②t=3,n=1

当①:N_{2}=(2413)=3,所以N=N_{1}+N_{2}=6\rightarrow +

当②:N_{2}=(2431)=4,所以N=N_{1}+N_{2}=7\rightarrow -

4. 行列式的定义

4.1. 行列互换,其值不变

D=\begin{vmatrix} a_{11} & a_{12} & a_{13}& a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41} & a_{42} &a_{43}& a_{44} \end{vmatrix}=D^{T} =\begin{vmatrix} a_{11} & a_{21} & a_{31}& a_{41}\\ a_{12} & a_{22} &a_{32}&a_{42}\\a_{13}&a_{23}&a_{33}&a_{43}\\a_{14} & a_{24} &a_{34}& a_{44} \end{vmatrix}

第一种解释:假设如D=a+b+c+d+e+fD^{T}=b+d+e+f+a+c

所以D=D^{T}

第二种解释:对D抽取一项,有(-1)^{N(3241)}a_{13}a_{22}a_{34}a_{41}(从上往下写),知N(3241)=4\rightarrow +;对D^{T}抽取同样一项,但此时其行列下标已不能表示其真实位置,故变换一下,可得:

a_{41}a_{22}a_{13}a_{34}=b_{14}b_{22}b_{31}b_{43},可知N(4213)=4\rightarrow +,所以D=D^{T}

4.2 对换行列式的其中两行(列),其余不变,行列式变号

D_{1}=\begin{vmatrix} a_{11} & a_{12} & a_{13}& a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41} & a_{42} &a_{43}& a_{44} \end{vmatrix} D_{2} = \begin{vmatrix} a_{31} & a_{32} & a_{33}& a_{34}\\ a_{21} & a_{22} &a_{23}&a_{24}\\a_{11}&a_{12}&a_{13}&a_{14}\\a_{41} & a_{42} &a_{43}& a_{44} \end{vmatrix}

得:D_{1}=-D_{2}

第一种解释:假设如D_{1}=a+b+(-c)+d+(-e)+fD_{2}=(-a)+(-b)+c+(-d)+e+(-f)

所以D_{1}=-D_{2}

第二种解释:

D_{1}抽取一项,有(-1)^{N(3142)}a_{13}a_{21}a_{34}a_{42}(从上往下写),知N(3142)=3\rightarrow -;对D_{2}抽取同样一项,但此时其行列下标已不能表示其真实位置,故变换一下,可得:

a_{34}a_{21}a_{13}a_{42}=b_{14}b_{21}b_{33}b_{42},可知N(4132)=4\rightarrow +,所以D_{1}=-D_{2}

推论:两行(列)相等\Rightarrow D=0,因为由此性质,有D=-D,所以D=0.

4.3 行列式某行(列)有公因子k,则k可以提到行列式外

\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ ka_{21} & ka_{22} &ka_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}=k\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}=\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\ka_{31}&ka_{32}&ka_{33} \end{vmatrix}= \begin{vmatrix} a_{11} & ka_{12}&a_{13}\\ a_{21} & ka_{22} &a_{23}\\a_{31}&ka_{32}&a_{33} \end{vmatrix}

原理:k(a+b)=ka+kb

\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ ka_{21} & ka_{22} &ka_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}=ka_{11}a_{22}a_{33}+ka_{12}a_{23}a_{31}+ka_{13}a_{21}a_{32}+(-ka_{13}a_{22}a_{31})+(-ka_{12}a_{21}a_{33})+(-ka_{11}a_{23}a_{32})

同理:\begin{vmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{vmatrix}=k^{2}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}

\begin{vmatrix} ka_{11} & ka_{12}&ka_{13}\\ ka_{21} & ka_{22} &ka_{23}\\ka_{31}&ka_{32}&ka_{33} \end{vmatrix}=k^{3}\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}

4.4 行列式中若两行成比例,则行列式值为0

\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ ka_{11} & ka_{12} &ka_{13}\\a_{31}&a_{32}&a_{33} \end{vmatrix}=k\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{11} & a_{12} &a_{13}\\a_{31}&a_{32}&a_{33} \end{vmatrix}=0

4.5 " 相加之分 "

D=\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21}+a^{'}_{21} & a_{22}+a^{'}_{22} &a_{23}+a^{'}_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}= \begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22} &a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a^{'}_{21} & a^{'}_{22} &a^{'}_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}

原理:展开分离相加可变得

单行(列)可折性

\begin{vmatrix} a+x & b+y \\ c+z & d+w \end{vmatrix}=\begin{vmatrix} a & b \\ c+z & d+w \end{vmatrix}+\begin{vmatrix} x & y \\ c+z & d+w \end{vmatrix}

=\begin{vmatrix} a & b \\ c & d \end{vmatrix}+\begin{vmatrix} a & b \\ z & w \end{vmatrix}+\begin{vmatrix} x & y \\ c & d \end{vmatrix}+\begin{vmatrix} x & y \\ z & w \end{vmatrix}

4.6 将行列式的某一行(列)元素,乘同一数加到另一行(列)对应的元素上,所得新行列式的值等于原行列式

知右边

例:D=\begin{vmatrix} 3 &1 & -1& 2\\ -5 & 1&3&-4\\2&0&1&-1\\1 & -5&3& -3\end{vmatrix}

想方设法将其变乘主上三角形式:

①:性质二:第一列与第二列互换:

=-\begin{vmatrix} 1 &3 & -1& 2\\ 1 & -5&3&-4\\0&2&1&-1\\-5 & 1&3& -3\end{vmatrix}

②:性质六:第一行乘(-1)加到第二行。得:

-\begin{vmatrix} 1 &3 & -1& 2\\ 0 & -8&4&-6\\0&2&1&-1\\-5 & 1&3& -3\end{vmatrix}

第一行乘 5 加到第四行。得:

-\begin{vmatrix} 1 &3 & -1& 2\\ 0 & -8&4&-6\\0&2&1&-1\\0 & 16&-2& 7\end{vmatrix}

③:性质二:第二列与第三列互换:

\begin{vmatrix} 1 &3 & -1& 2\\ 0 & 2&1&-1\\0&-8&4&-6\\0 & 16&-2& 7\end{vmatrix}

④:性质六:第二行乘 4 加到第三行,第二行乘 -8 加到第四行:

\begin{vmatrix} 1 &3 & -1& 2\\ 0 & 2&1&-1\\0&0&8&-10\\0 & 0&-10& 15\end{vmatrix}

再第三行乘 \frac{10}{8} 加到第四行:

\begin{vmatrix} 1 &3 & -1& 2\\ 0 & 2&1&-1\\0&0&8&-10\\0 & 0&0& \frac{5}{2}\end{vmatrix}

⑤:得主上三角形式,所以:1*2*8*\frac{5}{2}=40.

4.7 例题

4.7.1 一般变换得

例1:\begin{vmatrix} 3 &4 & 5& 11\\ 2 & 5&4&9\\5&3&2&12\\14 & -11&21& 29\end{vmatrix}

解:我们的目标是将其变为上三角或下三角,以便于计算;

将第二行乘(-1)加到第一行,然后得:

\begin{vmatrix} 1 &-1 & 1& 2\\ 2 & 5&4&9\\5&3&2&12\\14 & -11&21& 29\end{vmatrix},则此时将第一行乘(-2)(-5)(-14)加到第二,三,四行;得:

\begin{vmatrix} 1 &-1 & 1& 2\\ 0 & 7&2&5\\0&8&-3&2\\0 & 3&7& 1\end{vmatrix}则此时第一行/第一列不要再动!

第二行与第四行进行交换,再将第二列与第四列进行交换,得:

\begin{vmatrix} 1 &2 & 1& -1\\ 0 & 1&7&3\\0&2&-3&8\\0 & 5&2& 7\end{vmatrix}

此时将第二行乘(-2)(-5)分别加到三,四行,得:

\begin{vmatrix} 1 &2 & 1& -1\\ 0 & 1&7&3\\0&0&-17&2\\0 & 0&-33& -8\end{vmatrix}

此时第二行/第二列不要在动!

将三四列互换,完成后,将第三行乘4加到第四行,得:

\begin{vmatrix} 1 &2 & 1& -1\\ 0 & 1&3&7\\0&0&2&-17\\0 & 0&0& -101\end{vmatrix}

此时,该行列式已可方便计算。

例 2:

解:a^{4}

例2

4.7.2 行/列和相等行列式:

例3:\begin{vmatrix} 3 &1 & 1& 1\\ 1 & 3&1&1\\1&1&3&1\\1 & 1&1& 3\end{vmatrix}

解:48

例3

例4:\begin{vmatrix} x & a & a& ...&a \\ a & x &a&...&a \\a&a&x&...&a \\... & ...&...& ...&... \\a&a&a&...&x \end{vmatrix}

解:\left [ x+(n-1)a \right ](x-a)^{n-1}

例4

例5:\begin{vmatrix} 1 &-1 & 1& x-1\\ 1 & -1&x+1&-1\\1&x-1&1&-1\\x+1 & -1&1& -1\end{vmatrix}

解:x^{4}

例4

例6:求n+1阶行列式

\begin{vmatrix} x & a_{1} & a_{1}& ...&a_{n} \\ a_{1} & x &a_{1}&...&a_{n} \\a_{1}&a_{1}&x&...&a_{n} \\... & ...&...& ...&... \\a_{1}&a_{1}&a_{1}&...&x \end{vmatrix}

解:(x+\sum_{i=1}^{n}a_{i})\prod_{i=1}^{n}(x-a_{i})

例6

4.7.3 爪型行列式:

例7:D_{n+1}=\begin{vmatrix} 1 & a_{1} & a_{2}& ...&a_{n} \\ a_{1} & 1 &0&...&0 \\a_{2}&0&1&...&0 \\... & ...&...& ...&... \\a_{n}&0&0&...&1 \end{vmatrix}

用斜爪消平爪:

解:1-\sum_{i=1}^{n}a^{2}_{i}

4.7.3

例8:\begin{vmatrix} 1 &1 & 1& 1\\ 1 & 2&0&0\\1&0&3&0\\1 & 0&0& 4\end{vmatrix}

解:-2

4.7.3

例9:D_{n+1}=\begin{vmatrix} a_{1} & 0 & ...& 0&c_{1} \\ 0 & a_{2} &...&0&c_{2} \\...&...&...&...&... \\0 & 0&...& a_{n}&c_{n} \\b_{1}&b_{2}&...&b_{n}&a_{n+1} \end{vmatrix}

其中a_{i}\neq 0,i=1,2,3,...,n.

解:(\prod_{i=1}^{n}a_{i})(a_{n+1}-\sum_{i=1}^{n}\frac{b_{i}c_{i}}{a_{i}})

4.7.3

4.8 拉普拉斯展开式

n+k阶:

D=\begin{vmatrix} a_{11} &... & a_{1k}& 0&...&0\\ ... & ...&...&0&...&0\\a_{k1}&...&a_{kk}&0&...&0\\c_{11} & ...&c_{1k}& b_{11}&...&b_{1n}\\...&...&...&...&...&...\\c_{n1}&...&c_{nk}&b_{n1}&...&b_{nn}\end{vmatrix}

D_{1}=\begin{vmatrix} a_{11} & ...&a_{1k}\\ ... & ...&...\\a_{k1}&...&a_{kk} \end{vmatrix}D_{2}=\begin{vmatrix} b_{11} & ...&b_{1k}\\ ... & ...&...\\b_{k1}&...&b_{kk} \end{vmatrix}

证明:D=D_{1}D_{2}

简易想象证明如下:利用二阶行列式而进行的想象证明:

\begin{vmatrix} A_{k\times k} & 0 \\ C & B_{n\times n} \end{vmatrix}= \left | A_{k\times k} \right |\left | B_{n\times n} \right |= \begin{vmatrix} A_{k\times k} & C \\ 0 & B_{n\times n} \end{vmatrix}= \begin{vmatrix} A_{k\times k} & 0 \\ 0 & B_{n\times n} \end{vmatrix}

注意不是绝对值,是行列式。

\begin{vmatrix}0 & A_{k\times k} \\ B_{n\times n} & C \end{vmatrix}= \begin{vmatrix}C & A_{k\times k} \\ B_{n\times n} & 0 \end{vmatrix}= \begin{vmatrix}0 & A_{k\times k} \\ B_{n\times n} & 0 \end{vmatrix}=

(-1)^{kn}\left | A_{k\times k} \right |\left | B_{n\times n} \right |

例1:D_{1}=\begin{vmatrix} 1 & 4 & 0& 0&0 \\ 3 & 14 &0&0&0\\7&6&5&2&1 \\4 & 7&1& 2&5 \\5&3&34&1&34 \end{vmatrix}

D_{2}=\begin{vmatrix} 0 & 0 & 0& 2&4 \\ 0 & 0 &0&1&3\\5&1&2&4&7 \\1 & 2&5& 3&8 \\34&1&34&2&7 \end{vmatrix}

解:均:1040.

例2:D_{4}\begin{vmatrix} a &0 & 0& b\\ 0 & a&b&0\\0&c&d&0\\c & 0&0& d\end{vmatrix}

解:(ad-bc)^{2}

例3:计算2n阶行列式:

D_{2n}=\begin{vmatrix} a &0 & 0& 0&0&b\\ 0 & ...&0&0&...&0 \\0&0&a&b&0&0 \\0 & 0&c& d&0&0 \\0&...&0&0&...&0 \\c&0&0&0&0&d\end{vmatrix}_{2n\times 2n}

由上题可以进行猜想得其结果为:D_{2n}=(ad-bc)^{n}.

采用递推法:

略。

回到开头:

D=\begin{vmatrix} a_{11} &... & a_{1k}& 0&...&0\\ ... & ...&...&0&...&0\\a_{k1}&...&a_{kk}&0&...&0\\c_{11} & ...&c_{1k}& b_{11}&...&b_{1n}\\...&...&...&...&...&...\\c_{n1}&...&c_{nk}&b_{n1}&...&b_{nn}\end{vmatrix}

D_{1}=\begin{vmatrix} a_{11} & ...&a_{1k}\\ ... & ...&...\\a_{k1}&...&a_{kk} \end{vmatrix}D_{2}=\begin{vmatrix} b_{11} & ...&b_{1k}\\ ... & ...&...\\b_{k1}&...&b_{kk} \end{vmatrix}

证明:D=D_{1}D_{2}

(注:任何行列式都可以仅通过行/列变换为上/下三角行列式)

证明如下:

行变换:

D_{1}\Rightarrow\begin{vmatrix} P_{11} & ...&0\\ ... & ...&...\\P_{k1}&...&P_{kk} \end{vmatrix}=P_{11}...P_{kk}

列变换:

D_{2}\Rightarrow\begin{vmatrix} q_{11} & ...&0\\ ... & ...&...\\q_{n1}&...&q_{nn} \end{vmatrix}=q_{11}...q_{nn}

D=\begin{vmatrix} P_{11} &... & 0& 0&0&0\\ ... & ...&...&0&0&0 \\P_{k1}&...&P_{kk}&0&0&0 \\C_{11} & ...&C_{1k}& q_{11}&...&0 \\...&...&...&...&...&... \\C_{n1}&...&C_{nk}&q_{n1}&...&q_{nn}\end{vmatrix}

=P_{11}...P_{kk}q_{11}...q_{nn}=D_{1}D_{2}

4.9 对称行列式与反对称行列式

4.9.1 对称

\begin{vmatrix} x & a&b \\ a & x&c\\b&c&x \end{vmatrix}

知有a_{ij}=a_{ji}

4.9.2 反对称

满足a_{ij}=-a_{ji},则a_{ii}=-a_{ii},所以a_{ii}=0.

D=\begin{vmatrix} 0 & a&-b \\ -a & 0&c\\b&-c&0 \end{vmatrix}

对其进行转置,有

D^{T}=\begin{vmatrix} 0 & -a&b \\ a & 0&-c\\-b&c&0 \end{vmatrix}

可知当前D^{T}D的(-1)的奇次方,即D^{T}乘(-1)奇数阶即为D,又知D=D^{T}

所以D=0.

故可知奇数阶反对称行列式为0.

5. 行列式按行/列展开

(计算行列式的全新方法)

5.1:余子式:

将行列式某元素所在行和列的元素全去掉,剩余部分所构成的行列式,称为该元素的余子式。

D=\begin{vmatrix} a_{11} & a_{12} & a_{13}& a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41} & a_{42} &a_{43}& a_{44} \end{vmatrix}

其中的a_{32}余子式为M_{32}=\begin{vmatrix} a_{11} & a_{13}&a_{14}\\ a_{21} & a_{23} &a_{24}\\a_{31}&a_{33}&a_{34} \end{vmatrix}a_{24}余子式为M_{24}=\begin{vmatrix} a_{11} & a_{12}&a_{13}\\ a_{31} & a_{32} &a_{33}\\a_{41}&a_{42}&a_{43} \end{vmatrix}

5.2:代数余子式:

规定:如a_{32}代数余子式为A_{32}=(-1)^{3+2}M_{32}a_{24}代数余子式为A_{24}=(-1)^{2+4}M_{24}

5.3:引理:

n 阶行列式,若第 i 行除(i,j)元素都为 0 ,则该行列式等于a_{ij}与其代数余子式的乘积。即D=(-1)^{j-1+i-1}D_{1}

D=\begin{vmatrix} a_{11} & ... &a_{1j} & ...&a_{1n} \\ ... & ... &...&...&...\\0&...&a_{ij}&...&0 \\... & ...&...& ...&...\\a_{n1}&...&a_{nj}&...&a_{nn} \end{vmatrix}=a_{ij}A_{ij}=a_{ij}(-1)^{i+j}M_{ij}

证明从略:

5.3

例1:

D=\begin{vmatrix} 4 & 3 & 1\\ 0 & 0 &2\\1 & 7 & 2 \end{vmatrix}

解:-50

例2:

D=\begin{vmatrix} 0 & 1 & 2\\ 0 & 3 &4\\1 & 7 & 6 \end{vmatrix}

解:-8

例3:

D=\begin{vmatrix} 0 &2 & 1& 3\\ 0 & 2&6&7\\2&0&3&7\\0 & 0&3& 0\end{vmatrix}

解:-48

5.3

5.4 定理2(行列式按行/列展开法则)

行列式等于它的任一行/列的各元素与对应代数余子式乘积之和

D=\begin{vmatrix} a_{11} & a_{12} & ...&a_{1n} \\ ...& ... &...&...\\a_{i1} & a_{i2} & ...&a_{in} \\ ...&...&...&...\\ a_{n1}&a_{n2}&...&a_{nn}\end{vmatrix}=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}

证明从略:

5.4

辩析:D_{1}D_{2}a_{i1}的代数余子式有无区别?

D_{1}=\begin{vmatrix} a_{11} & a_{12} & ...&a_{1n} \\ ...& ... &...&...\\a_{i1} & a_{i2} & ...&a_{in} \\ ...&...&...&...\\ a_{n1}&a_{n2}&...&a_{nn}\end{vmatrix}

D_{2}=\begin{vmatrix} a_{11} & a_{12} & ...&a_{1n} \\ ...& ... &...&...\\a_{i1} & 0 & ...&0 \\ ...&...&...&...\\ a_{n1}&a_{n2}&...&a_{nn}\end{vmatrix}

解:动用公式,无区别,故其代数余子式可用同一符号。

5.5 例题

例1:

D=\begin{vmatrix} 2 &-1 & 0& 0\\ 0 & 2&-1&0\\0&0&2&-1\\-1 & 0&0& 2\end{vmatrix}

解:15

原则:选则含0量较高的行/列展开

例2:

D=\begin{vmatrix} \lambda &-1 & 0& 0\\ 0 & \lambda &-1&0\\0&0&\lambda &-1\\4 & 3&2& \lambda +1\end{vmatrix}

解:异爪型:

4+3\lambda +2\lambda ^{2}+\lambda ^{3}+\lambda ^{4}

例3:

D=\begin{vmatrix} 3 &1 & -1& 2\\ -5 & 1&3&-4\\2&0&1&-1\\1 & -5&3& -3\end{vmatrix}

解:40

例4:

D=\begin{vmatrix} 3 &4 & 5& 11\\ 2 & 5&4&9\\5&3&2&12\\14 & -11&21& 29\end{vmatrix}

解:202

5.5

5.6 行列式按行/列展开的逆向运用

5.6.1 运用加边法求解行列式

D_{n+1}=\begin{vmatrix} 1 & ? &? & ...&? \\ 0 & a_{11}&a_{12}&...&a_{1n} \\0&a_{21}&a_{22}&...&a_{2n} \\... & ...&...& ...&... \\0&a_{n1}&a_{n2}&...&a_{nn} \end{vmatrix}=1\cdot (-1)^{1+1}\begin{vmatrix} a_{11}& ... & a_{1n}\\ ... & ... &...\\a_{n1} & ... & a_{nn} \end{vmatrix}

即 容易\rightleftharpoons难算

例1:

D_{n}=\begin{vmatrix} 1+x_{1}^{2} &x_{1}x_{2} & ...& x_{1}x_{n}\\ x_{2}x_{1} & 1+x_{2}^{2}&...&x_{2}x_{n}\\...&...&...&...\\x_{n}x_{1} & x_{n}x_{2}&...& 1+x_{n}^{2}\end{vmatrix}

解:1+\sum_{i=1}^{n}x_{i}^{2}

例2:D_{n}=

\begin{vmatrix} a_{1}+x_{1}& a_{2} & ...& a_{n}\\ a_{1} & a_{2}+ x_{2}&...& a_{n}\\...&...&...&...\\ a_{1} & a_{2}& ...& a_{n}+ x_{n}\end{vmatrix}

解:

(1+\sum_{i=1}^{n}\frac{a_{i}}{x_{i}})(\prod_{i=1}^{n}x_{i})

5.6.1

5.6.2 求余子式/代数余子式之和

例1:写出其代数余子式之和

D_{1}=\begin{vmatrix} 3 &7 & 8& 4\\ 2 & 6&1&6\\1&4&3&2\\4 & 1&8& 9\end{vmatrix}

D_{2}=\begin{vmatrix} 3 &7 & 8& 4\\ 2 & 6&1&6\\2&8&1&2\\4 & 1&8& 9\end{vmatrix}

D_{3}=\begin{vmatrix} 3 &7 & 8& 4\\ 2 & 6&1&6\\7&-6&2&3\\4 & 1&8& 9\end{vmatrix}

解:易

行列式按列收拢即代数余子式之和变为行列式

例2:

D=\begin{vmatrix} 3 &-5 & 2& 1\\ 1 & 1&0&-5\\-1&3&1&3\\2 & -4&-1& -3\end{vmatrix}

D的(i,j)元素余子式和代数余子式记作M_{ij}A_{ij}

A_{11}+A_{12}+A_{13}+A_{14},M_{11}+M_{12}+M_{13}+M_{14},2A_{11}-4A_{12}-A_{13}-3A_{14}

5.6.3 推论:

行列式某行元素与其它行对应元素的代数余子式相乘,然后相加,最后结果必为0(对列也成立)

D=\begin{vmatrix} 8 &4 & -1& 2\\ 6 & 3&2&7\\7&5&7&2\\2 & -3&9& 6\end{vmatrix}

8A_{41}+4A_{42}-A_{43}+2A_{44}=0

(因为将其收拢后,会有两行一样的,故)

例 :已知

D=\begin{vmatrix} 2 &2 & 2& 2\\ a_{21} & a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41} & a_{42}&a_{43}& a_{44}\end{vmatrix}=a

\sum_{i=1}^{4}\sum_{j=1}^{4}A_{ij}

解:a/2

5.6.3

6. 范德蒙德行列式

D=\begin{vmatrix} 1 & 1 &...&1 \\ x_{1}^{}& x_{2}^{}&...& x_{n}^{}\\ x_{1}^{2} & x_{2}^{2} & ...&x_{n}^{2} \\ ...&...&...&...\\ x_{1}^{n-1}&x_{2}^{n-1}&...&x_{n}^{n-1}\end{vmatrix}=\prod (x_{i}-x_{j})(1\leqslant j<i\leqslant n)

证明:加边法+数学归纳法

6

如:

D=\begin{vmatrix} 1 & 1 &1&1 \\ x_{1}^{}& x_{2}^{}&x_{3}^{}& x_{4}^{}\\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2}&x_{4}^{2} \\ x_{1}^{3}&x_{2}^{3}&x_{3}^{3}&x_{4}^{3}\end{vmatrix}

其结果为:(x_{4}-x_{3})(x_{4}-x_{2})(x_{4}-x_{1})(x_{3}-x_{2})(x_{3}-x_{1})(x_{2}-x_{1})

即:\prod (x_{i}-x_{j})(1\leqslant j<i\leqslant 4)

又有:

D=\begin{vmatrix} 1 & 1 &...&1 \\ x_{2}^{}& x_{2}^{}&...& x_{n}^{}\\ x_{2}^{2} & x_{2}^{2} & ...&x_{n}^{2} \\ ...&...&...&...\\ x_{2}^{n-1}&x_{2}^{n-1}&...&x_{n}^{n-1}\end{vmatrix}=\prod (x_{i}-x_{j})(2\leqslant j<i\leqslant n)

例1:

D=\begin{vmatrix} 1 &1 & 1& 1\\ 2 & -2&1&-1\\4&4&1&1\\8 & -8&1& -1\end{vmatrix}

解:72

例2:

解:

\prod (x_{i}-x_{j})(1\leqslant j<i\leqslant n)

6

例3:

D=\begin{vmatrix} 1 & 1 & 1\\ x_{1} & x_{2} &x_{3}\\x_{1}^{3} & x_{2}^{3} & x_{3}^{3} \end{vmatrix}

解:(\sum_{i=1}^{3}x_{i})\left [ \prod (x_{i}-x_{j}) \right ]

(1\leqslant j<i\leqslant 3)

6

练习:

D=\begin{vmatrix} 1 & 1 & 1&1&1\\ x_{1}^{} & x_{2}^{} &x_{3}^{}&x_{4}^{}&x_{5}^{} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} &x_{4}^{2} &x_{5}^{2} \\x_{1}^{3}&x_{2}^{3}&x_{3}^{3}&x_{4}^{3}&x_{5}^{3} \\x_{1}^{5}&x_{2}^{5}&x_{3}^{5}&x_{4}^{5}&x_{5}^{5} \end{vmatrix}

解:D=(\sum_{i=1}^{5})(\prod (x_{i}^{}-x_{j}^{} )(1\leqslant j<i\leqslant 5))

7. 用递推法求行列式

例1:

D_{n}=\begin{vmatrix} 2 &-1& 0& ...&0&0\\-1& 2&-1&...&0&0 \\0&-1&2&...&0&0 \\... & ...&...& ...&...&... \\0&0&0&...&2&-1\\0&0&0&...&-1&2\end{vmatrix}

解:n + 1

例2:

D_{n}=\begin{vmatrix} 5 &3& 0& ...&0&0\\2& 5&3&...&0&0 \\0&2&5&...&0&0 \\... & ...&...& ...&...&... \\0&0&0&...&5&3\\0&0&0&...&2&5\end{vmatrix}

解:3^{n+1}-2^{n+1}

7

例3:

解:当\alpha \neq \beta时,为\frac{\alpha^{n+1} -\beta^{n+1}}{\alpha -\beta}\alpha =\beta时,为(n+1)\alpha ^{n}.

7

例4:

D_{n}=\begin{vmatrix} a_{1} &-1& 0& ...&0&0\\a_{2}& x_{}&-1&...&0&0 \\a_{3}&0&x&...&0&0 \\... & ...&...& ...&...&... \\a_{n-1}&0&0&...&x&-1\\a_{n}&0&0&...&0&x\end{vmatrix}

解:异爪型:

D_{n}=a_{n}+xa_{n-1}+x^{2}a_{n-2}+...+x^{n-2}a_{2}+x^{n-1}a_{1}

7

8. 用数学归纳法证明行列式

8.1 第一种

①:第一个正确;

②:前一个正确\Rightarrow后一个正确

由①②\Rightarrow所有都正确。

8.2 第二种

①:第1,2个正确;

②:前两个正确\Rightarrow后一个正确

由①②\Rightarrow所有都正确。

8.3 证明范德蒙德行列式

证明从略。

例1:

证明:

D_{n}=\begin{vmatrix} 2a &1& 0& ...&0&0\\a^{2}& 2a&1&...&0&0 \\0&a^{2}&2a&...&0&0 \\... & ...&...& ...&...&... \\0&0&0&...&2a&1\\0&0&0&...&a^{2}&2a\end{vmatrix}=(n+1)a^{n}

证明从略。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值