线性代数第一章行列式

本章主要介绍n阶行列式的定义、性质及其计算方法。此外还要介绍用n阶行列式求解n元线性方程组的克拉默(Cramer)法则。

$1.二阶与三阶行列式

一、二元线性方程组与二阶行列式

用消元法解二元线性方程组:
在这里插入图片描述
为消去未知数x2,以及a22与a12分别乘上列两方程的两端,然后两个方程相减,得:
在这里插入图片描述
类似地,消去x1,得:
在这里插入图片描述
当a11a22-a12a21不等于0时,求得方程组(1)的解为:
在这里插入图片描述
(2)式中的分子、分母都是四个数分两对相乘再相减而得。其中分母a11a22-a12a21是由方程组(1)的四个系数确定的,把这四个数按它们在方程组(1)中的位置,排成二行二列(横排称行、竖排称列)的数表:
在这里插入图片描述
表达式a11a12-a12a21称为数表(3)所确定的二阶行列式,并记作:
在这里插入图片描述
数aij(i=1,2;j=1,2)称为行列式(4)的元素或元。元素aij的第一个下标i称为行标,表明该元素位于第i行,第二个下标j称为列标,表明该元素位于第j列。位于第i行第j列的元素称为行列式(4)的(i,j)元。
上述二阶行列式的定义,可用对角线法则来记忆。如下图:

在这里插入图片描述
把a11到a22的实联线称为主对角线,a12到a21的虚联线称为副对角线,于是二阶行列式便是主对角线上的两元素之积减去副对角线上两元素之积所得的差。
利用二阶行列式的概念,(2)式中x1,x2的分子也可以写成二阶行列式,即:
在这里插入图片描述
若记:
在这里插入图片描述
那么(2)式可写成
在这里插入图片描述
注意这里的分母D是由方程组(1)的系数所确定的二阶行列式(称系数行列式),x1的分子D1是常数项b1,b2替换D中x1的系数a11,a21所得的二阶行列式,x2的分子D2是用常数项b1,b2替换D中x2的系数a12,a22所得的二阶行列式。

例1

求解二元线性方程组
在这里插入图片描述

解:

在这里插入图片描述

因此:

在这里插入图片描述

二、三阶行列式
定义

设有9个数排成3行3列的数表:
在这里插入图片描述
记:
在这里插入图片描述
(6)式称为数表(5)所确定的三阶行列式。
上述定义表明三阶行列式含6项,每项均为不同行不同列的三个元素的乘积再冠以正负号,其规律遵循下图所示的对角线法则:图中有三条实线看做是平行于主对角线的联线,三条虚线看做是平行于副对角线的联线,实线上三元素的乘积冠正号,虚线上三元素的乘积冠负号。
在这里插入图片描述

例2

计算三阶行列式:
在这里插入图片描述

解:

按对角线法则,有
在这里插入图片描述

例3

求解方程:
在这里插入图片描述

方程左端的三阶行列式
在这里插入图片描述
x 2 − 5 x + 6 = 0 解 得 x = 2 或 x = 3 x^2-5x+6=0 解得 x=2或x=3 x25x+6=0x=2x=3.
对角线法则只适用于二阶与三阶行列式,为研究四阶及更高阶行列式,下面先介绍有关全排列的知识,然后引出n阶行列式的概念。

$2.全排列及其逆序数

先看一个例子
引例 用1,2,3三个数字,可以组成多少个没有重复数字的三位数?
解:
这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法?
显然,百位上可以从1,2,3三个数字中任选一个,所有有3种放法;十位上只能从剩下的两个数字中选一个,所以有2种放法;而个位上只能放最后剩下的一个数字,所以只有一种放法。因此,共有321=6种放法。
这6个不同的三位数是:
123,231,312,132,213,321
在数学中,把考察的对象,例如上例中的数字1,2,3叫做元素。上述问题就是:
把3个不同的元素排成一列,共有几种不同的排法?
对于n个不同的元素,也可以提出类似的问题:把n个不同的元素排成一列,共有几种不同的排法?
把n个不同的元素排成一列,叫做这n个元素的全排列(也简称排列)
n个不同元素的所有排列的种数,通常用 P n P_n Pn表示。由引例的结果可知 P 3 = 3 ∗ 2 ∗ 1 = 6 P_3=3*2*1=6 P3=321=6
为了得出计算 P n P_n Pn的公式,可以仿照引例进行讨论:
从n个元素中任取一个放在第一个位置上,有n种取法;
又从剩下的n-1个元素中任取一个放在第二个位置上,有n-1种取法;
这样继续下去,直到最后只剩下一个元素放在第n个位置上,只有1种取法。于是:
在这里插入图片描述
对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序的总数叫做这个排列的逆序数。

逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列。

下面来讨论计算排列的逆序数的方法:
不失一般性,不妨设n个元素为1至n这n个自然数,并规定由小到大为标准次序,设
在这里插入图片描述
为这n个自然数的一个排列,考虑元素 P i ( i = 1 , 2 , . . . , n ) P_i(i=1,2,...,n) Pi(i=1,2,...,n),如果比 P i P_i Pi大的且排在 P i P_i Pi前面的元素有 t i t_i ti个,就说 P i P_i Pi这个元素的逆序数是 t i t_i ti。全体元素的逆序数之总和:
在这里插入图片描述
即是这个排列的逆序数。

例4

求排列32514的逆序数

解 :

在排列32514中:
3排在首位,逆序数为0;
2的前面比2大的数有一个(3),故逆序数为1;
5是最大数,逆序数为0;
1的前面比1大的数有三个(3、2、5),故逆序数为3;
4的前面比4大的数有一个(5),故逆序数为1,于是这个排列的逆序数为
在这里插入图片描述

$3. n阶行列式的定义

为了给出n阶行列式的定义,先来研究三阶行列式的结构,三阶行列式定义为:
在这里插入图片描述
容易看出:
一、(6)式右边的每一项都恰是三个元素的乘积,这三个元素位于不同的行、不同的列。因此,(6)式右端的任一项除正负号可以写成 a a p a , a 2 p 2 , a 3 p 3 a_{ap_a},a_{2p_2},a_{3p_3} aapa,a2p2,a3p3。这里的第一个下标(行标)排成标准次序123,而第二个下标(列标)排成p1p2p3,它是1,2,3三个数的某个排列,这样的排列共有6种,对应(6)式右端共含6项。
二、各项的正负号与列标的排列对照:
带正号的三项列标排列是123,231,312;
带负号的三项列标排列是132,213,321。
经计算可知前三个排列都是偶排列,而后三个排列都是奇排列。因此各项所带的正负号可以表示为 ( − 1 ) t (-1)^t (1)t,其中t为列标排列的逆序数。
总之,三阶行列式可以写成
在这里插入图片描述
其中t为排列p1,p2,p3的逆序数, ∑ \sum 表示对1,2,3三个数的的所有排列p1p2p3取和。
因此,可以把行列式推广到一般情形。

定义

设有 n 2 n^2 n2个数,排成n行n列的数表:
在这里插入图片描述
作出表中位于不同行不同列的n个数的乘积,并冠以符号 ( − 1 ) t (-1)^t (1)t,得到形如

( − 1 ) t a 1 p 1 a 2 p 2 a 3 p 3 (-1)^ta_{1p_1} a_{2p_2}a_{3p_3} (1)ta1p1a2p2a3p3 (7)

的项,其中p1p2…pn为自然数1,2,。。。n的一个排列,t为这个排列的逆序数。由于这样的排列共有n!个,因为形如(7)式的项共有n!项。所有这n!项的代数和:
在这里插入图片描述
称为n阶行列式,记作
在这里插入图片描述
简记作 d e t ( a i j ) det(a_{ij}) det(aij),其中 a i j a_{ij} aij为行列式D的(i,j)元。
按此定义的二阶、三阶行列式,与$1式中用对角线法则定义的二阶、三阶行列式,显然是一致的。当n=1时,一阶行列式|a|=a,注意不要与绝对值记号相混淆。

例5

证明n阶行列式
在这里插入图片描述
其中未写出的元素都是0.

第一式左端称为对角行列式,其结果是显然的,下面只证第二式。
在第二式左端中, λ i \lambda_i λi为行列式的(i,n-i+1)元,故记 λ i = a i , n − i + 1 , \lambda_i=a_i,n-i+1, λi=ai,ni+1,则依行列式定义
在这里插入图片描述其中t为排列n(n-1)…2 1的逆序数,故
t = 0 + 1 + 2 + . . . + ( n − 1 ) = n ( n − 1 ) 2 t=0+1+2+...+(n-1)= \frac{n(n-1)}{2} t=0+1+2+...+(n1)=2n(n1)。 证毕
主对角线以下(上)的元素都为0的行列式叫做上(下)三角形行列式,它的值与对角行列式一样。

例6

证明下三角行列式
在这里插入图片描述
由 于 当 j > i 时 , a i j = 0 , 故 D 中 可 能 不 为 0 的 元 素 a i p i , 由于当j>i时,a_{ij}=0,故D中可能不为0的元素a_{ip_i}, j>iaij=0,D0aipi,
其 下 标 应 有 p i ≤ i , 即 p 1 ≤ 1 , p 2 ≤ 2 , . . . , p n ≤ n . 其下标应有p_i\le i,即p_1\le 1,p_2 \le 2,...,p_n\le n. pii,p11,p22,...,pnn.
在所有排列p1p2…pn中,能满足上述关系的排列只有一个自然排列12…n,所以D中可能不为0的项只有一项 ( − 1 ) t a 11 a 22 . . . a n n . (-1)^ta_{11}a_{22}...a{nn}. (1)ta11a22...ann.
此项的符号 ( − 1 ) t = ( − 1 ) 0 = 1 , 所 以 (-1)^t=(-1)^0=1,所以 (1)t=(1)0=1,

D = a 11 a 22 . . . a n n D=a_{11}a_{22}...a_{nn} D=a11a22...ann

$4.对换

为了研究n阶行列式的性质,先来讨论对换以及它与排列的奇偶性的关系。
在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换。将相邻两个元素对换,叫做相邻对换

定理1 一个排列中的任意两个元素对换,排列改变奇偶性。

先证相邻对换的情形。
设 排 列 为 a 1 . . . a l a b b 1 . . . b m , 对 换 a 与 b , 变 为 a 1 . . . a l b a b 1 . . . b m . 显 然 , 设排列为a_1...a_labb_1...b_m,对换a与b,变为a_1...a_lbab_1...b_m.显然, a1...alabb1...bm,aba1...albab1...bm.
a 1 . . . a l ; b 1 . . . b m 这 些 元 素 的 逆 序 数 经 过 对 换 并 不 改 变 , 而 a , b 两 元 素 的 逆 序 数 改 变 为 : 当 a < b 时 , a_1...a_l;b_1...b_m这些元素的逆序数经过对换并不改变,而a,b两元素的逆序数改变为:当a<b时, a1...al;b1...bm

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值