装箱问题(01背包模型)

题意:

有一个箱子容量为 V,同时有 n 个物品,每个物品有一个体积(正整数)。

要求 n 个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

输入格式

第一行是一个整数 V,表示箱子容量。

第二行是一个整数 n,表示物品数。

接下来 n 行,每行一个正整数(不超过10000),分别表示这 n 个物品的各自体积。

输出格式

一个整数,表示箱子剩余空间。

数据范围

0<V≤200000<V≤20000,
0<n≤30

示例:

输入样例:

24
6
8
3
12
7
9
7

输出样例:

0

 

题解:

解法一:二维动态规划

首先理解题意,题目要求剩余空间最小,则要求物品组成的空间和最大,但同时不超过箱子,

可以将物品的体积看作价值,只不过价值等于体积,这样就是价值等于体积的01背包模型。

dp[i][j]:前i个物品,容量为j时,可以得到的最大值。

状态转移方程:dp[i][j]=max(dp[i][j],dp[i-1][j-a[i]]+a[i]);

#include<iostream>
#include<algorithm>
using namespace std; 
int v,n,a[31],dp[31][20001]={0};
int main()
{
  
    
    cin>>v>>n;
    for(int i=1;i<=n;++i)
    cin>>a[i];
    for(int i=1;i<=n;++i)
    for(int j=1;j<=v;++j)
    {
        dp[i][j]=dp[i-1][j];
        if(a[i]<=j) dp[i][j]=max(dp[i][j],dp[i-1][j-a[i]]+a[i]);
    }
    cout<<v-dp[n][v]<<endl;
    
}

解法二,一维的动态规划

思想是相同的,只是为了节省空间

dp[j]:容量为j的时候,拥有的最大价值

状态转移方程:dp[j]=max(dp[j],dp[j-a[i]]+a[i]);

注意:j要逆序,在状态转移方程中,dp[j-a[j]]对应dp[i-1][j-a[j]],即前i个物品在当前容量下的最大值,如果正序,dp[j-a[j]]已经更新,代表了包含当前物品的最大值,可能已经把第i个物品选中了,就会造成第i个物品重复选择。

#include<iostream>
#include<algorithm>
using namespace std; 
int v,n,a[31],dp[20001]={0};
int main()
{
  
    
    cin>>v>>n;
    for(int i=1;i<=n;++i)
    cin>>a[i];
    for(int i=1;i<=n;++i)
    for(int j=v;j>0;--j)
    {
    
        if(a[i]<=j) dp[j]=max(dp[j],dp[j-a[i]]+a[i]);
    }
    cout<<v-dp[v]<<endl;
    
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值