1.索引概述
概念:存储引擎用于快速找到数据记录的数据结构,帮助mysql 高效获取数据的数据结构。
目的:减少磁盘IO的次数,加快查询速率。
演示:
无索引全表扫描,有索引比如建立b+tree能更加快速的查找。
优势:提高数据检索的效率,降低IO成本,通过索引对数据 进行排序降低排序的成本
劣势:更新数据比较慢,索引需要占据额外的空间。
2.索引的结构
数据查找的方式(没有索引)
1.在一个数据页的查找(数据页是数据库的基本单位,默认大小16kb,类似书架的概念)
- 以主键为搜索条件(主键为递增的),可以使用二分,迅速定位
- 以其他列为搜索条件,不能保证有序,从最小记录开始依次遍历单链表
2.在很多数据页查找数据
- 定位数据所在的页
- 从所在页中查找相应记录
知识小贴士:
磁盘IO是非常耗费时间的,查找数据首先将数据从磁盘中读入内存(整个数据页),再做相 应 的查找操 作。
索引的设计方案
1.使用行格式来存储记录,Compact行格式示意图
2.将记录放在页中,会根据主键id排序,示意图
3.多个页之间,再页上建立目录项(有最小主键值key和页号page_no),示意图
4.建立目录页
B+Tree 大部分引擎都支持该索引
Hash索引 底层哈希表实现,只有精确匹配查询索引列才有效,不支持范围查询
R-Tree(空间索引) 主要用于地理空间类型,MYISAM引擎
Full-text(全文索引) 建立倒排索引快速匹配文档
二叉树结构缺点:可能出现不平衡情况,大量数据情况下,层级深
红黑树缺点:大量数据情况下,层级深检索速度慢
B-Tree(多路平衡查找树)
B+Tree
非叶子节点起到索引作用,叶子节点存放数据
叶子以单链表的形式
MySql索引数据结构对B+Tree进行了优化,在原有基础上增加了一个指向相邻节点的链表指针, 提高区间访问的性能。
Hash索引
采用hash算法,将key转换成hash值,映射到对应的哈希表中,传哈希冲突,使用链表解决。
特点:支持=,in,不支持范围查询,无法利用hash索引排序,在不产生hash冲突的情况下效率高
支持的存储引擎:Memory引擎,InnoDB拥有自适应的hash功能。
索引分类
1.分类
- 主键索引:默认创建,只能有一个
- 唯一索引,常规索引,全文索引:可以有多个
2. 根据索引的存储形式可以分类,在InnoDB中
- 聚集(聚簇)索引(clustered index),只有一个,必须有,将数据存储与索引放在一起, 索引的叶子节 点存放行数据
- 二级索引(Secondary index),可以有多个,分开存储,索引的叶子节点存储的是对应的主键
3. 聚簇索引简单了解
优点
缺点
限制
聚集索引选取的规则:
如果存在主键索引,主键索引就是聚集索引。
不存在主键索引,第一个唯一索引为聚集索引
没有主键,唯一索引,InnoDB会自动生成rowid作为隐藏的聚集索引。
回表查询:现根据二级索引找到主键值,再根据主键值到聚集索引拿到数据。
问题;
select * from user where id=1;
select * from user where name="aa";
那个效率高?
首先会根据name 的值取二级索引查到对应id,再根据id取聚集索引查找对应行数据。
所以id效率高
问题:
InnoDB的B+Tree的高度?
索引语法
创建索引
create index index_name on table_name (index_col_name,...);
查看索引
show index from table_name;
删除索引
drop index index_name from table_name
案例:
现有一张试卷信息表examination_info,其中包含各种类型试卷的信息。为了对表更方便快捷地 查 询,需要在examination_info表创建以下索引,规则如下:
在duration列创建普通索引idx_duration、在exam_id列创建唯一性索引uniq_idx_exam_id、在 tag列创建全文索引full_idx_tag。
create index idx_duration on examination_info(duration);
create unique index uniq_idx_exam_id on examination_info(exam_id);
create fulltext index full_idx_tag on examination_info(tag);
索引性能分析
命令,查看当前数据库,insert,update,select,delete的访问频次
show [session|global] status like 'Com_______'
慢查询日志