论文阅读笔记---HetConv

HetConv是分组卷积与逐点卷积的结合,可显著减少计算量,FLOPs减少至原来的1/8到1/3,而精度几乎不变。它通过改变filter尺寸实现异构,对比标准卷积、深度可分离卷积及分组卷积+逐点卷积,HetConv在计算量和识别精度上更具优势。论文链接:https://arxiv.org/abs/1903.04120,pytorch实现:https://github.com/sxpro/HetConvolution2d_pytorch。
摘要由CSDN通过智能技术生成

1 写在前边的话

HetConv性能:当使用HetConv取代标准卷积之后,FLOPs大概是之前的1/8到1/3,更重要的是精度几乎不变!!!

论文地址:https://arxiv.org/abs/1903.04120

2 HetConv的结构

实质:是分组卷积与逐点卷积结合的产物。具体如下:

1414369-20190905193927922-2033241196.jpg

对于卷积(标准卷积;深度卷积;分组卷积;逐点卷积)来讲,每一个filter的尺寸是完全一样的,文章中也称之为同构卷积。

所谓异构卷积,也就是说,对于同一个filter来讲,它的尺寸是不一样的,文章中是有两种。

这样讲可能有点抽象,举个例子来体会一下:

假设原有的一个fliter为:3x3xM,HetConv将M中M/P的3x3卷积核尺寸保留,剩余的M-M/P卷积核尺寸变为1x1的,其中P是一个比例系数。

上边讲的只是一个filter,现假设输出的通道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值