文章目录
1 RAG出现的背景
自从2022年底ChatGPT横空出世引爆了大模型技术浪潮,时至今日已经一年有余,如何从技术侧向商业侧落地转化是一直以来业内普遍关注的问题。从目前企业端观察到的情况来看,基于大模型的知识库是一个比较有潜力和价值的应用场景,能够帮助企业大幅提高知识的整合和应用效率。
然而由于通用预训练大模型的训练数据主要来源于公开渠道,缺乏企业专业和私有知识,直接使用将难以支撑企业内部的专业知识问答。
通过重新训练或微调的方式可以实现知识扩充,但存在以下缺点:
(1)需要的数据量大,训练代价高、周期长;
(2)对于企业知识的快速更新无法及时响应;
(3)对已有知识无法有效更新或删除;
(4)大模型存在的“幻觉”问题。
而RAG(Retrieval-Augmented Generation,检索增强生成)技术,能够在一定程度上解决以上问题。RAG,顾名思义,即通过引入存储在外部数据库中的知识以增强大模型的问答能力。具体来说,大模型在回答问题或生成内容前,首先在外部数据库中进行检索,将相似度高的内容返回给大模型再进一步整理生成。这种模式能够提高输出的准确性和相关性,避免大模型产生“幻觉”生成事实不正确的内容