切比雪夫大数定律

切比雪夫大数定律指出,在n个独立随机变量趋于无穷时,它们的平均值趋向于期望值。该定律适用于不同分布的随机变量。通过切比雪夫不等式,我们可以证明当n无限增大时,平均值与期望值的偏差概率趋于0,从而验证了大数定律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

切比雪夫大数定律

切比雪夫大数定律是指,假设存在 n n n个相互独立的随机变量,当 n n n趋近于无穷时,这 n n n个随机变量的平均值也会趋近于这 n n n个随机变量期望的平均值。切比雪夫大数定律相比起一般我们听到的大数定律更一般,不仅能够解释独立同分布随机变量的大数定律,也能够解释独立但不同分布随机变量的大数定律。切比雪夫不等式有以下形式:
lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ ≥ 0 } = 0 \lim_{n\rightarrow\infin} P\{|\frac{1}{n}\sum_{i=1}^n X_i-\frac{1}{n}\sum_{i=1}^n E(X_i)|\ge 0\}=0 nlimP{n1i=1nXin1i=1nE(Xi)0}=0
max ⁡ D ( X i ) = C \max D(X_i)=C maxD(Xi)=C
关于这个式子,首先我们将 n n n个随机变量的平均值看作一个新的随机变量,那么关于这个新的随机变量我们可以得到其期望和方差如下:
E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E ( X i ) E(\frac{1}{n}\sum_{i=1}^n X_i)=\frac{1}{n}\sum_{i=1}^nE(X_i) E(n1i=1nXi)=n1i=1nE(Xi)
D ( 1 n ∑ i = 1 n X i ) = 1 n 2 ∑ i = 1 n D ( X i ) ≤ n C n 2 = C n D(\frac{1}{n}\sum_{i=1}^n X_i)=\frac{1}{n^2}\sum_{i=1}^nD(X_i)\le\frac{nC}{n^2}=\frac{C}{n} D(n1i=1nXi)=n21i=1nD(Xi)n2nC=nC
已知切比雪夫不等式:
P { ∣ X − μ ∣ ≥ ϵ } ≤ σ 2 ϵ 2 P\{|X-\mu|\ge\epsilon\}\le\frac{\sigma^2}{\epsilon^2} P{Xμϵ}ϵ2σ2
将这个随机变量及其期望和方差代入切比雪夫不等式得到:
P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ ≥ ϵ } ≤ C n ϵ 2 P\{|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nE(X_i)|\ge\epsilon\}\le\frac{C}{n\epsilon^2} P{n1i=1nXin1i=1nE(Xi)ϵ}nϵ2C
关于上式,当 n n n趋近于正无穷时,右边趋近于0,所以切比雪夫大数定律得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值