切比雪夫大数定律
切比雪夫大数定律是指,假设存在
n
n
n个相互独立的随机变量,当
n
n
n趋近于无穷时,这
n
n
n个随机变量的平均值也会趋近于这
n
n
n个随机变量期望的平均值。切比雪夫大数定律相比起一般我们听到的大数定律更一般,不仅能够解释独立同分布随机变量的大数定律,也能够解释独立但不同分布随机变量的大数定律。切比雪夫不等式有以下形式:
lim
n
→
∞
P
{
∣
1
n
∑
i
=
1
n
X
i
−
1
n
∑
i
=
1
n
E
(
X
i
)
∣
≥
0
}
=
0
\lim_{n\rightarrow\infin} P\{|\frac{1}{n}\sum_{i=1}^n X_i-\frac{1}{n}\sum_{i=1}^n E(X_i)|\ge 0\}=0
n→∞limP{∣n1i=1∑nXi−n1i=1∑nE(Xi)∣≥0}=0
max
D
(
X
i
)
=
C
\max D(X_i)=C
maxD(Xi)=C
关于这个式子,首先我们将
n
n
n个随机变量的平均值看作一个新的随机变量,那么关于这个新的随机变量我们可以得到其期望和方差如下:
E
(
1
n
∑
i
=
1
n
X
i
)
=
1
n
∑
i
=
1
n
E
(
X
i
)
E(\frac{1}{n}\sum_{i=1}^n X_i)=\frac{1}{n}\sum_{i=1}^nE(X_i)
E(n1i=1∑nXi)=n1i=1∑nE(Xi)
D
(
1
n
∑
i
=
1
n
X
i
)
=
1
n
2
∑
i
=
1
n
D
(
X
i
)
≤
n
C
n
2
=
C
n
D(\frac{1}{n}\sum_{i=1}^n X_i)=\frac{1}{n^2}\sum_{i=1}^nD(X_i)\le\frac{nC}{n^2}=\frac{C}{n}
D(n1i=1∑nXi)=n21i=1∑nD(Xi)≤n2nC=nC
已知切比雪夫不等式:
P
{
∣
X
−
μ
∣
≥
ϵ
}
≤
σ
2
ϵ
2
P\{|X-\mu|\ge\epsilon\}\le\frac{\sigma^2}{\epsilon^2}
P{∣X−μ∣≥ϵ}≤ϵ2σ2
将这个随机变量及其期望和方差代入切比雪夫不等式得到:
P
{
∣
1
n
∑
i
=
1
n
X
i
−
1
n
∑
i
=
1
n
E
(
X
i
)
∣
≥
ϵ
}
≤
C
n
ϵ
2
P\{|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nE(X_i)|\ge\epsilon\}\le\frac{C}{n\epsilon^2}
P{∣n1i=1∑nXi−n1i=1∑nE(Xi)∣≥ϵ}≤nϵ2C
关于上式,当
n
n
n趋近于正无穷时,右边趋近于0,所以切比雪夫大数定律得证。