切比雪夫不等式与马尔可夫不等式

切比雪夫不等式和马尔可夫不等式在概率论和统计学中至关重要,它们分别给出了随机变量偏离期望值的概率限制。切比雪夫不等式通过方差量化了这种偏离,而马尔可夫不等式则提供了一个无需方差信息的界限。这两个不等式是大数定律的基础。
摘要由CSDN通过智能技术生成

切比雪夫不等式与马尔可夫不等式

切比雪夫不等式与马尔可夫不等式为随机变量与其期望值偏离程度提供了数值上的证明,统计学与概率论上著名的大数定律可以基于这两个不等式得到证明。

切比雪夫不等式

切比雪夫不等式将随机变量的分布与其期望和方差关联起来,有以下形式:
P { ∣ X − μ ∣ ≥ ϵ } ≤ σ 2 ϵ 2 ϵ > 0 P\{|X-\mu|\ge\epsilon\}\le\frac{\sigma^2}{\epsilon^2}\\ \epsilon\gt 0 P{ Xμϵ}ϵ2σ2ϵ>0
这个不等式直观上理解就是随机变量越偏离其期望值的概率越小,关于这个概率的度量可以和其方差联系到一起。关于这个不等式的证明,有以下推导:
P { ∣ X − μ ∣ ≥ ϵ } = ∫ ∣ x − μ ∣ ≥ ϵ f ( x ) d x ≤ ∫ ∣ x − μ ∣ ≥ ϵ ( x − μ ) 2 ϵ 2 f ( x ) d x ≤ 1 ϵ 2 ∫ ( x − μ ) 2 f ( x ) d x = σ 2 ϵ 2 P\{|X-\mu|\ge\epsilon\}=\int_{|x-\mu|\ge\epsilon}f(x)dx\le\int_{|x-\mu|\ge\epsilon}\frac{(x-\mu)^2}{\epsilon^2}f(x)dx\\\le\frac{1}{\epsilon^2}\int (x-\mu)^2f(x)dx=\frac{\sigma^2}{\epsilon^2}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值