中心极限定理

中心极限定理

独立同分布随机变量 X i X_i Xi,存在有限的均值 μ \mu μ和方差 σ 2 \sigma^2 σ2,则有下面定理成立:
F n ( x ) = lim ⁡ n → ∞ P { ∑ i = 1 n X i − n μ n σ ≤ x } = 1 2 π ∫ − ∞ x e − t 2 2 d t F_n(x)=\lim_{n\rightarrow\infin}P\{\frac{\sum_{i=1}^nX_i-n\mu}{\sqrt{n}\sigma}\le x\}=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{x}e^{-\frac{t^2}{2}}dt Fn(x)=nlimP{n σi=1nXinμx}=2π 1xe2t2dt
这个定理说明,将独立同分布随机变量 n n n次采样的和作为一个随机变量,关于这个随机变量的概率密度,当 n n n越大,越趋近于均值为 n μ n\mu nμ,方差为 n σ 2 n\sigma^2 nσ2的正态分布。另一种说法是,将独立同分布随机变量 n n n次采样的均值作为一个随机变量,概率密度趋近于均值为 μ \mu μ,方差为 σ 2 n \frac{\sigma^2}{n} nσ2的正态分布。这也说明, n n n越大,估算结果置信度越高。关于这个定理的证明,首先定义特征函数:
M x ( t ) = E ( e x t ) = ∫ − ∞ ∞ f ( x ) e x t d x M_{x}(t)=E(e^{xt})=\int_{-\infin}^{\infin}f(x)e^{xt}dx Mx(t)=E(ext)=f(x)extdx
特征函数有几个性质:
M x ( 0 ) = ∫ − ∞ ∞ f ( x ) d x = 1 M_{x}(0)=\int_{-\infin}^{\infin}f(x)dx=1 Mx(0)=f(x)dx=1
M x ′ ( 0 ) = ∫ − ∞ ∞ x f ( x ) d x = E ( x ) M_{x}^{'}(0)=\int_{-\infin}^{\infin}xf(x)dx=E(x) Mx(0)=xf(x)dx=E(x)
M x ′ ′ ( 0 ) = ∫ − ∞ ∞ x 2 f ( x ) d x = E ( x 2 ) M_{x}^{''}(0)=\int_{-\infin}^{\infin}x^2f(x)dx=E(x^2) Mx(0)=x2f(x)dx=E(x2)
上面的数字,求导是求关于 t t t的导数。如果两个概率密度的特征函数在各个 t t t处相等,我们可以认为这两个概率密度是相等的。首先我们求标准正态分布 Z Z Z的特征函数:
M Z ( t ) = ∫ − ∞ ∞ 1 2 π e − x 2 2 e t x d x = e t 2 2 ∫ − ∞ ∞ 1 2 π e − ( x − t ) 2 2 d x = e t 2 2 M_{Z}(t)=\int_{-\infin}^{\infin}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}e^{tx}dx=e^{\frac{t^2}{2}}\int_{-\infin}^{\infin}\frac{1}{\sqrt{2\pi}}e^{\frac{-(x-t)^2}{2}}dx=e^{\frac{t^2}{2}} MZ(t)=2π 1e2x2etxdx=e2t22π 1e2(xt)2dx=e2t2
上面的式子积分形式变为了求期望等于 t t t方差等于1的正态分布的积分,所以推导出结果。接着我们求随机变量 Y Y Y的特征函数:
Y = ∑ i = 1 n X i − n μ n σ = ∑ i = 1 n X i − μ n σ = ∑ i = 1 n Q i Y=\frac{\sum_{i=1}^nX_i-n\mu}{\sqrt{n}\sigma}=\sum_{i=1}^n\frac{X_i-\mu}{\sqrt{n}\sigma}=\sum_{i=1}^nQ_i Y=n σi=1nXinμ=i=1nn σXiμ=i=1nQi
M Y ( t ) = [ M Q i ( t ) ] n M_Y(t)=[M_{Q_i}(t)]^n MY(t)=[MQi(t)]n
M Q i ( t ) = e − μ t n σ M X i ( t n σ ) M_{Q_i}(t)=e^{-\frac{\mu t}{\sqrt{n}\sigma}}M_{X_i}(\frac{t}{\sqrt{n}\sigma}) MQi(t)=en σμtMXi(n σt)
ln ⁡ M Y ( t ) = n ln ⁡ M Q i ( t ) = n ( − μ t n σ + ln ⁡ M X i ( t n σ ) ) = − n μ t σ + n ln ⁡ M X i ( t n σ ) \ln{M_Y(t)}=n\ln{M_{Q_i}(t)}=n(-\frac{\mu t}{\sqrt{n}\sigma}+\ln{M_{X_i}(\frac{t}{\sqrt{n}\sigma})})=-\frac{\sqrt{n}\mu t}{\sigma}+n\ln{M_{X_i}(\frac{t}{\sqrt{n}\sigma})} lnMY(t)=nlnMQi(t)=n(n σμt+lnMXi(n σt))=σn μt+nlnMXi(n σt)
p = t n σ p=\frac{t}{\sqrt{n}\sigma} p=n σt代入式子得到:
ln ⁡ M Y ( t ) = − μ t 2 p σ 2 + t 2 p 2 σ 2 M X i ( p ) = t 2 σ 2 ( − μ p + ln ⁡ M X i ( p ) p 2 ) = t 2 σ 2 − μ p + ln ⁡ M X i ( p ) p 2 \ln{M_Y(t)}=-\frac{\mu t^2}{p\sigma^2}+\frac{t^2}{p^2\sigma^2}M_{X_i}(p)=\frac{t^2}{\sigma^2}(-\frac{\mu}{p}+\frac{\ln M_{X_i}(p)}{p^2})=\frac{t^2}{\sigma^2}\frac{-\mu p+\ln M_{X_i}(p)}{p^2} lnMY(t)=pσ2μt2+p2σ2t2MXi(p)=σ2t2(pμ+p2lnMXi(p))=σ2t2p2μp+lnMXi(p)
n → ∞ n\rightarrow\infin n时, p → 0 p\rightarrow 0 p0,所以现在是要求:
lim ⁡ n → ∞ ln ⁡ M Y ( t ) \lim_{n\rightarrow\infin}\ln{M_Y(t)} nlimlnMY(t)
关键是求:
lim ⁡ p → 0 − μ p + ln ⁡ M X i ( p ) p 2 \lim_{p\rightarrow 0}\frac{-\mu p+\ln{M_{X_i}(p)}}{p^2} p0limp2μp+lnMXi(p)
已知分子分母在极限处都得到0,根据洛必达法则对分子分母对 p p p求导,得到:
− μ + M X i ′ ( p ) M X i ( p ) 2 p \frac{-\mu+\frac{M_{X_i}^{'}(p)}{M_{X_i}(p)}}{2p} 2pμ+MXi(p)MXi(p)
lim ⁡ p → 0 M X i ′ ( p ) = μ \lim_{p\rightarrow 0}M_{X_i}^{'}(p)=\mu p0limMXi(p)=μ
lim ⁡ p → 0 M X i = 1 \lim_{p\rightarrow 0}M_{X_i}=1 p0limMXi=1
可以发现依然是分子分母在极限处等于0,所以继续洛必达得到:
M X i ′ ′ ( p ) M X i ( p ) − M X i ′ ( p ) 2 2 M X i ( p ) 2 = E ( X i 2 ) − E ( X i ) 2 2 = σ 2 2 \frac{M_{X_i}^{''}(p)M_{X_i}(p)-M_{X_i}^{'}(p)^2}{2M_{X_i}(p)^2}=\frac{E(X_i^2)-E(X_i)^2}{2}=\frac{\sigma^2}{2} 2MXi(p)2MXi(p)MXi(p)MXi(p)2=2E(Xi2)E(Xi)2=2σ2
将这个结果回代,最后得到:
lim ⁡ n → ∞ ln ⁡ M Y ( t ) = t 2 2 \lim_{n\rightarrow\infin}\ln M_{Y}(t)=\frac{t^2}{2} nlimlnMY(t)=2t2
所以有:
M Y ( t ) = e t 2 2 M_{Y}(t)=e^{\frac{t^2}{2}} MY(t)=e2t2
这说明 Y Y Y Z Z Z的概率密度是相等的,所以中心极限定理得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值