中心极限定理

中心极限定理指出,独立同分布随机变量的和或均值,随着样本数量增加,其分布趋向于正态分布。该定理对于理解和估计随机变量的分布有重要价值,且在大样本情况下,估算结果的置信度更高。
摘要由CSDN通过智能技术生成

中心极限定理

独立同分布随机变量 X i X_i Xi,存在有限的均值 μ \mu μ和方差 σ 2 \sigma^2 σ2,则有下面定理成立:
F n ( x ) = lim ⁡ n → ∞ P { ∑ i = 1 n X i − n μ n σ ≤ x } = 1 2 π ∫ − ∞ x e − t 2 2 d t F_n(x)=\lim_{n\rightarrow\infin}P\{\frac{\sum_{i=1}^nX_i-n\mu}{\sqrt{n}\sigma}\le x\}=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{x}e^{-\frac{t^2}{2}}dt Fn(x)=nlimP{ n σi=1nXinμx}=2π 1xe2t2dt
这个定理说明,将独立同分布随机变量 n n n次采样的和作为一个随机变量,关于这个随机变量的概率密度,当 n n n越大,越趋近于均值为 n μ n\mu nμ,方差为 n σ 2 n\sigma^2 nσ2的正态分布。另一种说法是,将独立同分布随机变量 n n n次采样的均值作为一个随机变量,概率密度趋近于均值为 μ \mu μ,方差为 σ 2 n \frac{\sigma^2}{n} nσ2的正态分布。这也说明, n n n越大,估算结果置信度越高。关于这个定理的证明,首先定义特征函数:
M x ( t ) = E ( e x t ) = ∫ − ∞ ∞ f ( x ) e x t d x M_{x}(t)=E(e^{xt})=\int_{-\infin}^{\infin}f(x)e^{xt}dx Mx(t)=E(ext)=f(x)extdx
特征函数有几个性质:
M x ( 0 ) = ∫ − ∞ ∞ f ( x ) d x = 1 M_{x}(0)=\int_{-\infin}^{\infin}f(x)dx=1 Mx(0)=f(x)dx=1
M x ′ ( 0 ) = ∫ − ∞ ∞ x f ( x ) d x = E ( x ) M_{x}^{'}(0)=\int_{-\infin}^{\infin}xf(x)dx=E(x) Mx(0)=xf(x)dx=E(x)
M x ′ ′ ( 0 ) = ∫ − ∞ ∞ x 2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值