SAT:布尔方程的可满足性问题。
2—SAT:合取范式中的每个子句中的文字个数都不超过两个
2-SAT一般解决的是一类比较固定的问题,即类似于模板题,对这类题的描述为:
现有n个人,并且每个人都只能够从各自的两个选项中选择一个,然后两两的选择都会相互影响,问是否每个人选择一个之后,能够满足条件。
解决这类问题关键是建边,一般对第一个选项记为xi,对第二个选项记为非xi,在图中节点的体现就是i号节点与i+n号节点,如果xi与xj的选择发生冲突,则认为(非xiV非xj为真),那么将建立边:
i-> j+n, j -> i+n。
建完边后就进行强连通分量的分解,判断i与i+n是否在同一个强连通分量中,如果这,则说明i为真时,i+n也为真,与题意矛盾,将不满足。反之,对于每个节点i,有:
i所在的强连通分量的拓扑顺序在i+n所在的强连通分量之后<=>i为真
证明:因为i在i+n后面,则在转置图中必不存在从i+n到i的路径,那么在原图中必不存在从i到i+n的路径,那么说明不会有(i+n) V(i+n)为真,故i+n不可能为真。
这类题一般来说属于比较模板的题,下面推荐一题,可以作为这类题的一个模板:
http://blog.csdn.net/dg_programming/article/details/38875905