使用Supabase进行RAG实现的详细指南

技术背景介绍

Supabase 是一个开源的 Firebase 替代品,建立在 PostgreSQL 数据库管理系统的基础上。我们可以利用 Supabase 和 pgvector 扩展来存储和检索向量嵌入,从而实现基于向量的检索增强生成(Retrieval-Augmented Generation,RAG)。这种方法可以将外部知识与生成模型相结合,生成更有针对性的回答。

核心原理解析

RAG的核心思想是对输入问题生成相应的嵌入向量,然后在向量数据库中进行向量匹配,检索最相关的文档,再将这些文档作为上下文输入给生成模型,从而生成更为精准的答案。Supabase 使用 pgvector 扩展来存储和索引嵌入向量,是实现 RAG 的理想工具。

代码实现演示

环境配置

首先,我们需要设置环境变量来访问 OpenAI 模型和 Supabase 服务。

  1. 获取 OPENAI_API_KEY
  2. 获取 SUPABASE_URLSUPABASE_SERVICE_KEY

在终端中设置这些环境变量:

export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
export OPENAI_API_KEY=<your-openai-api-key>

Supabase 数据库设置

如果你还没有设置 Supabase 数据库,可以按如下步骤操作:

  1. 访问 Supabase 以创建一个新的数据库。
  2. 在你的 Supabase 控制台中,打开 SQL 编辑器,运行以下脚本以启用 pgvector 并设置文档表:
-- Enable the pgvector extension to work with embedding vectors
create extension if not exists vector;

-- Create a table to store your documents
create table
  documents (
    id uuid primary key,
    content text, -- corresponds to Document.pageContent
    metadata jsonb, -- corresponds to Document.metadata
    embedding vector (1536) -- 1536 works for OpenAI embeddings, change as needed
  );

-- Create a function to search for documents
create function match_documents (
  query_embedding vector (1536),
  filter jsonb default '{}'
) returns table (
  id uuid,
  content text,
  metadata jsonb,
  similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
  return query
  select
    id,
    content,
    metadata,
    1 - (documents.embedding <=> query_embedding) as similarity
  from documents
  where metadata @> filter
  order by documents.embedding <=> query_embedding;
end;
$$;

安装和配置 LangChain

首先,安装 LangChain CLI:

pip install -U langchain-cli

创建一个新的 LangChain 项目并安装 rag-supabase 包:

langchain app new my-app --package rag-supabase

或者在现有项目中添加 rag-supabase 包:

langchain app add rag-supabase

然后在 server.py 文件中添加以下代码:

from rag_supabase.chain import chain as rag_supabase_chain

add_routes(app, rag_supabase_chain, path="/rag-supabase")

启动 LangServe 实例

在项目根目录下运行以下命令启动 LangServe 实例:

langchain serve

测试 RAG 功能

本地服务器会在 http://localhost:8000 启动,你可以在浏览器中访问以下端点:

  • 接口文档: http://127.0.0.1:8000/docs
  • RAG Playground: http://127.0.0.1:8000/rag-supabase/playground

我们还可以使用以下代码来从远程访问这个模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-supabase")

response = runnable.run({"query": "你的问题"})
print(response)

应用场景分析

这种 RAG 方法可以应用于各种场景,例如:

  • 客服系统:为了回答复杂问题,使用知识库来补充生成模型。
  • 搜索引擎:根据用户查询检索相关文档并生成简洁答案。
  • 教育平台:为学生的问题提供详细确切的答案。

实践建议

  • 确保你的文档数据库丰富且更新及时,以保证生成内容的准确性。
  • 对用于生成嵌入的模型进行微调,以适应特定领域的应用场景。
  • 定期评估并优化向量搜索功能,以提高检索效率和准确性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值