# 使用Supabase实现RAG(Retrieval Augmented Generation):详细指南
## 引言
在当前信息爆炸的时代,如何高效地从大量数据中提取信息是一个关键挑战。Retrieval Augmented Generation (RAG) 是一种将检索和生成结合起来的方法,非常适合此类任务。本篇文章介绍了如何使用Supabase和LangChain,结合OpenAI API,实现一个RAG系统。Supabase是一个开源的Firebase替代品,基于PostgreSQL构建,使用pgvector扩展来存储嵌入数据。
## 主要内容
### 环境设置
首先,我们需要设置环境变量来访问OpenAI和Supabase的API。
1. 获取你的OpenAI API密钥:
- 前往你的OpenAI账户的API密钥页面,生成一个新的密钥。
- 设置环境变量:
```bash
export OPENAI_API_KEY=<your-openai-api-key>
```
2. 获取你的Supabase URL和服务密钥:
- 前往Supabase项目的API设置页面:
- `SUPABASE_URL` 对应项目的URL
- `SUPABASE_SERVICE_KEY` 对应服务角色API密钥
- 设置环境变量:
```bash
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
```
### 设置Supabase数据库
接下来,我们需要配置Supabase数据库。如果你还没有创建数据库,请按照以下步骤进行操作:
1. 访问 [https://database.new](https://database.new) 来创建你的Supabase数据库。
2. 在Supabase Studio中,跳转到SQL编辑器,运行以下脚本来启用pgvector扩展并配置你的数据库以存储向量数据:
```sql
-- 启用pgvector扩展
create extension if not exists vector;
-- 创建一个表来存储文档
create table documents (
id uuid primary key,
content text, -- 对应Document.pageContent
metadata jsonb, -- 对应Document.metadata
embedding vector (1536) -- 1536适用于OpenAI嵌入,按需更改
);
-- 创建一个函数来搜索文档
create function match_documents (
query_embedding vector (1536),
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata j
使用Supabase实现RAG(Retrieval Augmented Generation):详细指南
最新推荐文章于 2024-12-30 11:19:34 发布