使用Supabase实现RAG(Retrieval Augmented Generation):详细指南

# 使用Supabase实现RAG(Retrieval Augmented Generation):详细指南

## 引言
在当前信息爆炸的时代,如何高效地从大量数据中提取信息是一个关键挑战。Retrieval Augmented Generation (RAG) 是一种将检索和生成结合起来的方法,非常适合此类任务。本篇文章介绍了如何使用Supabase和LangChain,结合OpenAI API,实现一个RAG系统。Supabase是一个开源的Firebase替代品,基于PostgreSQL构建,使用pgvector扩展来存储嵌入数据。

## 主要内容

### 环境设置
首先,我们需要设置环境变量来访问OpenAI和Supabase的API。

1. 获取你的OpenAI API密钥:
   - 前往你的OpenAI账户的API密钥页面,生成一个新的密钥。
   - 设置环境变量:
     ```bash
     export OPENAI_API_KEY=<your-openai-api-key>
     ```

2. 获取你的Supabase URL和服务密钥:
   - 前往Supabase项目的API设置页面:
     - `SUPABASE_URL` 对应项目的URL
     - `SUPABASE_SERVICE_KEY` 对应服务角色API密钥
   - 设置环境变量:
     ```bash
     export SUPABASE_URL=<your-supabase-url>
     export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
     ```

### 设置Supabase数据库
接下来,我们需要配置Supabase数据库。如果你还没有创建数据库,请按照以下步骤进行操作:

1. 访问 [https://database.new](https://database.new) 来创建你的Supabase数据库。
2. 在Supabase Studio中,跳转到SQL编辑器,运行以下脚本来启用pgvector扩展并配置你的数据库以存储向量数据:

    ```sql
    -- 启用pgvector扩展
    create extension if not exists vector;

    -- 创建一个表来存储文档
    create table documents (
      id uuid primary key,
      content text, -- 对应Document.pageContent
      metadata jsonb, -- 对应Document.metadata
      embedding vector (1536) -- 1536适用于OpenAI嵌入,按需更改
    );

    -- 创建一个函数来搜索文档
    create function match_documents (
      query_embedding vector (1536),
      filter jsonb default '{}'
    ) returns table (
      id uuid,
      content text,
      metadata j
### Retrieval Augmented Generation in NLP Models and Applications #### Definition and Concept Retrieval Augmented Generation (RAG) is a method that integrates retrieval-based and generation-based approaches, particularly useful for tasks requiring the reproduction of specific information. This technique leverages content pertinent to solving an input task as context, enabling more accurate knowledge retrieval which subsequently aids in generating better responses through iterative refinement processes [^1]. In addition, RAG significantly reduces model hallucination by grounding generated outputs on factual data retrieved from external sources or databases [^2]. #### General Process The general process of applying RAG within Natural Language Processing (NLP) involves several key steps: - **Contextual Information Collection**: Gathering relevant documents or pieces of text related to the query. - **Knowledge Retrieval**: Using these collected contexts to find precise facts or statements needed for response formulation. - **Response Generation**: Generating coherent answers based on both the original prompt and the retrieved information. This approach ensures that the final output not only addresses user queries accurately but also remains grounded in verified facts rather than potentially unreliable internal representations learned during training [^1]. #### Implementation Example Below demonstrates how one might implement a simple version of this concept using Python code snippets alongside popular libraries like Hugging Face Transformers for natural language understanding and FAISS for efficient similarity search among large document collections. ```python from transformers import pipeline import faiss import numpy as np def create_index(documents): """Creates an index structure suitable for fast nearest neighbor searches.""" embeddings = get_embeddings_for_documents(documents) dimensionality = len(embeddings[0]) # Initialize Faiss Index Flat L2 distance metric index = faiss.IndexFlatL2(dimensionality) # Add vectors into our searchable space index.add(np.array(embeddings).astype('float32')) return index def retrieve_relevant_contexts(query_embedding, index, top_k=5): """Finds most similar items given a query vector against indexed dataset""" distances, indices = index.search(np.array([query_embedding]).astype('float32'), k=top_k) return [(distances[i], idx) for i,idx in enumerate(indices.flatten())] # Assume `get_embeddings` function exists elsewhere... index = create_index(corpus_of_texts) qa_pipeline = pipeline("question-answering") for doc_id, score in retrieve_relevant_contexts(user_query_vector, index): answer = qa_pipeline(question=user_input, context=corpus_of_texts[doc_id]['text']) print(f"Answer found with relevance {score}: ",answer['answer']) ``` --related questions-- 1. What are some common challenges faced when implementing RAG systems? 2. Can you provide examples where RAG has been successfully applied outside traditional QA settings? 3. How does Graph Retrieval-Augmented Generation differ from standard RAG methods described here? 4. In what ways can integrating knowledge graphs enhance performance in RAG frameworks?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值