引言
在人工智能领域,检索增强生成(RAG)是一种强大的技术,可以结合现有数据资源与AI生成文本,以实现更强大的文本处理能力。Supabase作为一个开源的Firebase替代方案,提供了简单易用的API,可以与PostgreSQL相结合,通过pgvector存储向量嵌入。本文将详细介绍如何在Supabase中设置RAG,并与OpenAI和LangChain结合使用。
主要内容
环境设置
首先,我们需要设置环境变量以访问必要的API服务:
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
export OPENAI_API_KEY=<your-openai-api-key>
获取API密钥
- OpenAI: 登陆你的OpenAI账户,并在API密钥管理页面创建一个新的密钥。
- Supabase: 进入你的Supabase项目的API设置页面,找到项目URL和服务角色密钥。
Supabase数据库设置
设置数据库
访问https://database.new以创建你的Supabase数据库。在Supabase Studio的SQL编辑器中,运行以下脚本启用pgvector扩展并创建一个用于存储文档的表:
-- 启用pgvector扩展以进行向量嵌入