使用Supabase实现高效RAG:集成OpenAI与LangChain

引言

在人工智能领域,检索增强生成(RAG)是一种强大的技术,可以结合现有数据资源与AI生成文本,以实现更强大的文本处理能力。Supabase作为一个开源的Firebase替代方案,提供了简单易用的API,可以与PostgreSQL相结合,通过pgvector存储向量嵌入。本文将详细介绍如何在Supabase中设置RAG,并与OpenAI和LangChain结合使用。

主要内容

环境设置

首先,我们需要设置环境变量以访问必要的API服务:

export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
export OPENAI_API_KEY=<your-openai-api-key>

获取API密钥

  • OpenAI: 登陆你的OpenAI账户,并在API密钥管理页面创建一个新的密钥。
  • Supabase: 进入你的Supabase项目的API设置页面,找到项目URL和服务角色密钥。

Supabase数据库设置

设置数据库

访问https://database.new以创建你的Supabase数据库。在Supabase Studio的SQL编辑器中,运行以下脚本启用pgvector扩展并创建一个用于存储文档的表:

-- 启用pgvector扩展以进行向量嵌入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值