引言
在信息检索领域,检索的粒度如何选择直接影响着系统的精确度和实用性。近期由Chen等提出的密集X检索方法(Dense X Retrieval)提供了一种多向量索引策略,可以显著提高检索的准确性。本文将深入探讨这种方法的实现以及实用的代码示例,帮助开发者掌握这一新的技术工具。
主要内容
多向量索引策略简介
多向量索引策略是一种通过生成并使用去上下文化命题(propositions)的技术。这种方法是通过指示大语言模型(LLM)产生独立于特定上下文的陈述,这些陈述可以被向量化,从而提高检索的准确性。
存储与环境设置
在演示中,我们使用RecursiveUrlLoader将一个简单的学术论文进行索引,并将所有检索信息本地存储(使用Chroma和本地文件系统中的bytestore)。请注意,在某些地区,由于网络限制,您可能需要使用API代理服务来访问API。
为设置环境,请确保设置OPENAI_API_KEY
环境变量,以访问GPT-3.5和OpenAI嵌入类。
索引创建
要创建索引,请运行以下命令:
poetry install
poetry run python propositional_retrieval/ingest.py
代码示例
以下是在您的server.py
文件中使用命题检索的方法:
from propositional_retrieval import chain
add_routes(app, chain, path="/propositional-retrieval")
常见问题和解决方案
网络限制问题
如果由于网络限制无法访问OpenAI API,可以考虑使用API代理服务。请在代码中使用例如{AI_URL}
作为API端点,并在代码注释中说明:# 使用API代理服务提高访问稳定性
LangChain配置问题
配置LangSmith可以帮助您追踪、监控并调试LangChain应用程序。如果您没有访问权限,可以暂时跳过这一部分。
总结与进一步学习资源
多向量索引策略在提高信息检索系统的精度方面展示了极大的潜力。开发者可以通过实际操作演示加深对这一策略的理解。对于进一步学习,可以参考以下资源:
参考资料
- Chen, et al. “Dense X Retrieval: What Retrieval Granularity Should We Use?” 2023.
- LangChain和OpenAI的官方文档及示例代码。
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—