自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(102)
  • 收藏
  • 关注

原创 使用LangChain构建信息提取链

老铁们,今天我们聊聊如何从无结构文本中提取结构化信息。这不仅仅是将自然语言处理应用于真实场景,还涵盖了如何利用工具实现这一目标。相较于之前的静态方法,由于LLMs(大型语言模型)如ChatGPT的出现,信息提取变得更加灵活和动态。对于多实体的提取,模型允许输出空列表,这样可以更灵活处理没有信息的情况。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

2024-12-29 16:39:31 473

原创 构建基于图数据库的问答应用

在本指南中,我们将探讨如何在图数据库上创建一个问答链。这些系统允许我们对图数据库中的数据进行提问,并获得自然语言的答案。⚠️⚠️构建图数据库的问答系统需要执行模型生成的图查询,这其中存在一定的风险。确保您的数据库连接权限仅限于链/代理的需求,这将有助于减轻但不能消除构建模型驱动系统的风险。如需更多安全最佳实践,请参阅此处。

2024-12-29 16:11:37 875

原创 使用Cross Encoder进行重排序:从Retriever到SageMaker端点

在信息检索系统中,重排序是提高检索精度的重要技术手段。Cross Encoder可以与嵌入结合使用,作为一种强大的重排序机制。Hugging Face的Cross-Encoders文档对此有详细说明。在AWS SageMaker上部署Hugging Face的Cross Encoder模型可以利用其强大的计算能力,具体可以参考以下示例来创建SageMaker端点。代码下载模型,并在端点上实时运行推理。

2024-12-28 15:40:59 228

原创 使用GeoPandas和Langchain实现城市地理数据处理

GeoPandas的强大之处,不仅在于它简化了地理数据操作,还在于与其他库的良好集成。它使用Shapely进行几何操作,Fiona负责文件访问,而Matplotlib则将结果图形化。像我们这样对地理数据有需求的开发者,GeoPandas真的是一把利器。老铁们,今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~ GeoPandas的灵活性和强大功能绝对值得深入探索一番。

2024-12-28 08:24:06 299

原创 利用AlloyDB为PostgreSQL存储向量嵌入:从理论到实践

在AI的世界里,向量嵌入是个绕不开的话题。无论是自然语言处理还是图像识别,我们都要把数据转换成向量。AlloyDB凭借其与LangChain的集成,帮助我们轻松实现这一目标。那么,如何在AlloyDB for PostgreSQL中存储这些向量?下面我就带你一步步实现。老铁们,这篇文章从环境配置到实际操作,非常详细地介绍了如何利用AlloyDB for PostgreSQL存储和管理向量嵌入。说白了,只要掌握了这些步骤,管理向量数据根本不是难事。今天的技术分享就到这里,希望对大家有帮助。

2024-12-27 03:38:55 351

原创 使用LangChain中的Prediction Guard生态系统

老铁们,今天给大家介绍一下如何在LangChain中使用Prediction Guard生态系统。我们将分为两个部分来讲解:安装和设置,以及具体的Prediction Guard封装器的使用示例。技术点其实不难,接下来,我会带领大家一步步实现。

2024-12-26 16:11:37 258

原创 使用 Modal 部署和运行 LangChain 自定义 LLMs

在定义 Modal 函数和 Webhooks 时,你需要包含一个 prompt。返回结构是比较固定的。gpu="any",retries=3,这里,我们设置了一个 Web 端点,通过POST方法来调用get_text函数。run_gpt2函数内部实现了 GPT-2 模型的调用。

2024-12-26 13:59:15 336

原创 使用Pinecone和OpenAI实现RAG(检索增强生成)的实战指南

RAG,顾名思义,就是通过检索增强生成。说白了就是在生成内容的过程中,先从我们的数据中检索出一些有用的信息,然后让模型基于这些信息进行生成。这不仅能提高生成内容的相关性,还能显著提升模型的性能。模板文档:http://127.0.0.1:8000/docs今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—

2024-12-25 18:32:32 362

原创 如何允许维护者编辑你的Pull Request (PR)?

在许多开源项目中,提交PR之后,通常我们会得到一些反馈,要求进行额外修改。有时候,为了提高效率,让项目维护者直接做这些微调可能更加方便。这就是为什么GitHub允许PR作者选择是否允许维护者编辑他们的PR。如果你经常在不同的项目中协作,熟悉这些小设置会让你的开发工作变得更加高效。我个人一直认为保持良好的沟通和清晰的PR说明,也是让协作更顺畅的方法。如果有需要编辑PR的情况,及时与维护者沟通,表明你已经启用了相应的设置,也是一种良好的实践。今天的技术分享就到这里,希望对大家有帮助。

2024-12-25 12:05:04 228

原创 利用Couchbase存储聊天消息历史

Couchbase是一款备受赞誉的分布式NoSQL云数据库,提供了无与伦比的多样性、性能和财务价值。在AI应用中,Couchbase可以通过为开发者提供代码辅助以及支持向量搜索功能来增强应用程序。在这篇文章中,我将分享如何使用类,在Couchbase集群中存储聊天消息历史。这波操作可以说是相当丝滑~除了简单的存储和读取对话消息,我们还可以利用Couchbase的LCEL Runnables功能,将对话历史和AI对话链合并,便于复杂对话逻辑的实现。

2024-12-23 19:06:31 249

原创 `利用LOTR (Merger Retriever) 提升文档检索精度`

在信息检索中,单一的检索方法或模型往往存在一定的偏差。而LOTR通过结合不同的检索器,可以有效减少这种偏差,提高检索结果的准确性。此外,它还能对多个检索器的结果进行排序,确保最相关的文档优先呈现。此外,当你的检索结果超过10个文档时,性能可能会出现明显下降。这时候,我们可以通过来重新排序文档,提升模型的性能。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

2024-12-23 09:16:07 203

原创 深入解析Git:从Git仓库中加载文本文件的实用指南

深入理解Git – 廖雪峰的官方网站通过本文的介绍,你应该能够顺利地从Git仓库中加载所需的文件,并应用于各种数据分析任务。您的支持是我持续创作的动力!

2024-12-22 13:59:36 295

原创 [使用College Confidential API高效加载大学信息]

对于希望深入了解大学信息的用户,使用是一个有效的解决方案。通过这种方式,可以轻松获取和解析丰富的大学数据。

2024-12-22 11:28:00 306

原创 利用Browserbase驱动AI数据提取:从复杂UI到文本表示

Browserbase为AI应用中的数据提取和处理提供了强大的工具。

2024-12-22 11:10:13 505

原创 为何区块链上的NFT加载如此简单:Langchain Document Loader教程

Langchain文档加载器概念指南Langchain文档加载器使用指南。

2024-12-22 10:57:29 201

原创 [加速网页抓取:使用AsyncHtmlLoader访问多重URL]

未来版本更新及更多文档AsyncIO官方文档- 深入了解Python异步编程。

2024-12-22 10:32:37 396

原创 [解锁数据流:使用Airbyte和Shopify改进您的数据集成]

Airbyte官方文档Shopify API参考GitHub上的Airbyte连接器代码库。

2024-12-22 09:27:04 455

原创 [解密Pinecone Embeddings:如何利用Pinecone提供文本嵌入]

Pinecone的文本嵌入功能强大且易于使用,但还存在很多高级功能值得探索。Pinecone的官方文档Embedding models概念指南Embedding models指导手册。

2024-12-22 07:13:36 417

原创 探索MistralAI:使用Langchain实现文本嵌入

本文介绍了如何使用库的MistralAIEmbeddings类进行文本嵌入。Langchain官方文档MistralAIEmbeddings使用指南# 假设链接深入学习嵌入技术。

2024-12-22 06:03:18 373

原创 [利用Llama-cpp实现LangChain中的文本嵌入:从入门到精通]

Llama-cpp 文档:深入了解Llama-cpp的功能与配置。LangChain 文档:学习如何在LangChain中集成其他NLP工具。嵌入模型指南:了解更多关于文本嵌入的应用与优化方法。

2024-12-22 05:40:20 319

原创 探秘Cloudflare Workers AI:在边缘网络运行机器学习模型

Cloudflare Workers AI文档嵌入模型概念指南如何使用嵌入模型。

2024-12-22 03:30:36 312

原创 深入探讨AwaDB:使用LangChain进行向量嵌入的实用指南

AwaDB作为专门用于处理嵌入向量的AI原生数据库,为LLM应用提供了强大的支持。通过本文的介绍,希望您对如何在LangChain中使用AwaEmbeddings有了清晰的理解。

2024-12-22 03:02:39 214

原创 探索SambaNova的Sambaverse和SambaStudio:轻松管理和运行开源模型

LLM概念指南LLM操作指南。

2024-12-22 01:11:06 218

原创 [探索PromptLayer:提升你的GPT提示工程的利器]

PromptLayer为开发者提供了一个强大的工具,用于优化和跟踪GPT提示工程。PromptLayer 官方文档OpenAI 官方文档Langchain 社区资源。

2024-12-22 00:48:45 396

原创 使用Langchain与PipelineAI实现大规模ML模型管理

使用Langchain与PipelineAI可以显著简化大规模管理和调用ML模型的过程,值得开发者深入学习。

2024-12-22 00:32:01 293

原创 [解锁NVIDIA AI的潜力:使用ChatNVIDIA进行智能对话和代码生成]

NVIDIA通过NIM(NVIDIA Inference Microservices)提供多种AI模型,这些模型涵盖了对话、嵌入和重排序等领域。NIM是优化后的容器化服务,能够高效运行在NVIDIA加速的基础设施上。开发者可以通过NVIDIA的API目录测试这些模型,并根据需要在本地或云端部署。通过LangChain与NVIDIA AI的结合,开发者可以轻松构建支持高性能AI推理的应用程序。若想进一步深入了解ChatNVIDIA的全部特性和配置,请参考API参考文档。

2024-12-21 16:57:08 349

原创 [掌握Office365与LangChain集成:简便实现邮件与日历自动化]

本篇文章为你展示了使用LangChain集成Office365的基本步骤,并通过代码示例演示了如何利用该工具包进行自动化操作。通过学习和实践这些技巧,你将能够极大地提升日常办公效率。

2024-12-21 13:02:45 243

原创 揭秘Azure Blob Storage文件加载:实现云端文件自动化管理

Azure Blob Storage是一种对象存储,用于管理大量非结构化数据,支持图片、视频、备份文件等多种类型。其三种主要的Blob类型分别是:Block Blob、Append Blob和Page Blob,每种类型都适合不同的应用场景。本文介绍了使用Python加载Azure Blob Storage文件的基本步骤和方法。通过一些简单的配置和代码,你可以快速实现云端文件的自动化管理。建议进一步阅读Azure官方文档以及相关API指南,以深入理解其更多功能和最佳实践。

2024-12-21 11:53:24 1674

原创 [解锁Hugging Face数据集:LangChain集成指南]

通过使用LangChain加载Hugging Face数据集,开发者可以更高效地管理和查询数据。

2024-12-21 11:05:22 276

原创 探索Amazon Neptune与SPARQL: 实现高效的图数据库查询

Amazon Neptune是一种专为图形数据处理而设计的数据库服务,支持RDF和SPARQL。它提供了良好的可扩展性和高可用性,非常适合处理复杂的图数据查询和分析。通过本文,我们了解了如何使用SPARQL在Amazon Neptune中进行数据查询。Amazon Neptune官方文档AWS SDK for Python (Boto3) 文档。

2024-12-21 05:46:21 1916

原创 使用AWS DynamoDB存储和管理聊天历史的完整指南

在某些情况下,如本地测试环境中运行程序时,你可能需要指定 AWS 端点 URL。endpoint_url="http://localhost.localstack.cloud:4566", # 使用API代理服务提高访问稳定性在这篇文章中,我们探索了如何使用 AWS DynamoDB 来存储和管理聊天历史,介绍了类的使用。此外,还讨论了如何处理API访问的网络限制和使用复合键结构的技巧。AWS DynamoDB 官方文档boto3 文档。

2024-12-21 05:33:19 389

原创 探索Amazon S3:如何使用AWS S3 File加载文档对象

通过使用,我们可以简化从Amazon S3读取文件的过程。对于开发者来说,了解如何配置和使用这些工具是非常有用的。AWS S3官方文档Boto3文档Langchain Community文档加载器指南。

2024-12-21 04:37:03 253

原创 深入探索Zilliz Cloud与Milvus:轻松实现向量数据库管理

Zilliz Cloud与Milvus的结合,为处理大规模向量数据提供了一个强大的解决方案。通过本文的介绍,您应该可以开始在您的项目中利用Zilliz Cloud进行数据处理和语义搜索。Zilliz官方文档Milvus GitHub仓库。

2024-12-21 03:36:30 371

原创 [深入探索Vearch:高效相似性搜索与向量存储的利器]

Vearch是一个强大的工具,为深度学习应用提供了高效的相似性搜索和向量存储解决方案。要深入学习Vearch的使用,可以参考其官方文档和GitHub上的示例项目。

2024-12-21 01:52:23 291

原创 如何使用Tigris简化您的向量搜索应用开发

Tigris为无服务器向量搜索提供了强大的支持,并简化了应用开发过程。Tigris官方文档Tigris GitHub仓库通过这些资源,您可以深入了解Tigris的更多功能及其实际应用案例。

2024-12-21 00:50:07 337

原创 [解锁图数据库的力量:使用TigerGraph提升AI智能]

TigerGraph是一种高性能的图数据库,专注于存储和处理大规模的图数据。它能够快速地遍历复杂的关系节点(顶点)和边,以揭示隐藏的关系——这对于需要处理丰富关系数据的AI系统来说无疑是一个福音。TigerGraph提供了一种强大而灵活的方式来管理和查询复杂的关系数据,这对于很多AI应用场景都是一个极佳的选择。TigerGraph 官方文档TigerGraph GitHub 资源库。

2024-12-21 00:44:30 1793

原创 探索Postgres Embedding:通过向量相似度搜索提升数据查询效率

向量相似性搜索在推荐系统、图像检索等场景中有着广泛的应用。通过将与Postgres结合使用,我们可以在保证准确性的同时显著提升查询效率。Postgres官方文档LangChain社区文档。

2024-12-20 20:31:07 341

原创 [将HTML转化为纯文本:使用html2text的实用指南]

通过使用html2text,将HTML转换为纯文本变得简单高效。html2text官方文档Markdown格式指南。

2024-12-20 15:34:22 630

原创 使用Gradient轻松优化和生成LLM输出:从入门到精通

通过本文,我们探索了Gradient的基本功能和使用方法,并提供了实用的代码示例。要深入学习,建议查阅官方文档和在线教程。同时,使用API代理服务确保稳定访问是一个需要注意的重要步骤。

2024-12-20 14:54:01 522

原创 探索Dedoc:文件解析的强大工具

Dedoc是解析多种文档格式的强大工具,其灵活的API和开源库使开发者能够轻松地集成文档解析功能。通过使用Dedoc,开发者能够有效地提取所需的信息,提高项目的效率。

2024-12-20 12:03:19 791

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除