用python抓取一个网页的xhr,python爬取网站数据代码

欢迎来到今天的讨论,我们将探讨,python抓取网页数据并写入excel python爬虫技术抓取网站数据,一起探索吧!

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可python技术开发高级证书。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份GPT CSDN的 Python GPT CSDN,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉PythonGPT CSDN学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

需要这份系统化GPT CSDN的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

Antoine de Saint-Exupery , French writer and aviator

Michael Jackson , American singer, songwriter and dancer

并发方法,总共耗时:226.呵呵33

##################################################

使用多线程并发后的爬虫执行时间约为227秒,大概是一般方法的三分之一的时间,速度有了明显的提升啊!多线程在速度上有明显提升,但执行的网页顺序是无序的,在线程的切换上开销也比较大,线程越多,开销越大。

异步方法

异步方法在爬虫中是有效的速度提升手段,使用aiohttp可以异步地处理HTTP请求,使用asyncio可以实现异步IO,需要注意的是,aiohttp只支持3.5.3以后的Python版本。使用异步方法实现该爬虫的完整Python代码如下:

import requests

from bs4 import BeautifulSoup

import time

import aiohttp

import asyncio

开始时间

t1 = ()

print(‘#’ * 50)

url = “?title=Special:WhatLinksHere/Q5&limit=500&from=0”

请求头部

headers = {‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36’}

发送HTTP请求

req = (url, headers=headers)

解析网页

soup = BeautifulSoup(, “lxml”)

找到name和Deion所在的记录

human_list = (id=‘mw-whatlinkshere-list’)(‘li’)

urls = []

获取网址

for human in human_list:

url = (‘a’)[‘href’]

urls.append(‘’+url)

异步HTTP请求

async def fetch(session, url):

async with (url) as response:

return await ()

解析网页

async def parser(html):

利用BeautifulSoup将获取到的文本解析成HTML

soup = BeautifulSoup(html, “lxml”)

获取name和deion

name = (‘span’, class_=“wikibase-title-label”)

desc = (‘span’, class_=“wikibase-deionview-text”)

if name is not None and desc is not None:

print(‘%-40s,\t%s’%(, ))

处理网页,获取name和deion

async def download(url):

async with aiohttp.ClientSession() as session:

try:

html = await fetch(session, url)

await parser(html)

except Exception as err:

print(err)

利用asyncio模块进行异步IO处理

loop = asyncio.get_event_loop()

tasks = [asyncio.ensure_future(download(url)) for url in urls]

tasks = asyncio.gather(*tasks)

loop.run_until_complete(tasks)

t2 = () # 结束时间

print(‘使用异步,总共耗时:%s’ % (t2 - t1))

print(‘#’ * 50)

输出结果如下(省略中间的输出,以……代替):

##################################################

Frédéric Taddeï , French journalist and TV host

Gabriel Gonzáles Videla , Chilean politician

Denmark , sovereign state and Scandinavian country in northern Europe

Usain Bolt , Jamaican sprinter and soccer player

使用异步,总共耗时:126.9002583026886

##################################################

显然,异步方法使用了异步和并发两种提速方法,自然在速度有明显提升,大约为一般方法的六分之一。异步方法虽然效率高,但需要掌握异步编程,这需要学习一段时间。

如果有人觉得127秒的爬虫速度还是慢,可以尝试一下异步代码(与之前的异步代码的区别在于:仅仅使用了正则表达式代替BeautifulSoup来解析网页,以提取网页中的内容):

import requests

from bs4 import BeautifulSoup

import time

import aiohttp

import asyncio

import re

开始时间

t1 = ()

print(‘#’ * 50)

url = “?title=Special:WhatLinksHere/Q5&limit=500&from=0”

请求头部

headers = {

‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36’}

发送HTTP请求

req = (url, headers=headers)

解析网页

soup = BeautifulSoup(, “lxml”)

找到name和Deion所在的记录

human_list = (id=‘mw-whatlinkshere-list’)(‘li’)

urls = []

获取网址

for human in human_list:

url = (‘a’)[‘href’]

urls.append(‘’ + url)

异步HTTP请求

async def fetch(session, url):

async with (url) as response:

return await ()

解析网页

async def parser(html):

利用正则表达式解析网页

try:

name = re.findall(r’(.+?)', html)[0]

desc = re.findall(r’(.+?)', html)[0]

print(‘%-40s,\t%s’ % (name, desc))

except Exception as err:

pass

处理网页,获取name和deion

async def download(url):

async with aiohttp.ClientSession() as session:

try:

html = await fetch(session, url)

await parser(html)

except Exception as err:

print(err)

利用asyncio模块进行异步IO处理

loop = asyncio.get_event_loop()

tasks = [asyncio.ensure_future(download(url)) for url in urls]

tasks = asyncio.gather(*tasks)

loop.run_until_complete(tasks)

t2 = () # 结束时间

print(‘使用异步(正则表达式),总共耗时:%s’ % (t2 - t1))

print(‘#’ * 50)

输出的结果如下(省略中间的输出,以……代替):

##################################################

Dejen Gebremeskel , Ethiopian long-distance runner

Erik Kynard , American high jumper

Buzz Aldrin , American astronaut

Egon Krenz , former General Secretary of the Socialist Unity Party of East Germany

使用异步(正则表达式),总共耗时:16.521944999694824

##################################################

16.5秒,仅仅为一般方法的43分之一,速度如此之快,令人咋舌

爬虫框架Scrapy

最后,我们使用著名的Python爬虫框架Scrapy来解决这个爬虫。我们创建的爬虫项目为wikiDataScrapy,项目结构如下:

在中设置“ROBOTSTXT_OBEY = False”. 修改,代码如下:

-- coding: utf-8 --

import scrapy

class WikidatascrapyItem():

define the fields for your item here like:

name = scrapy.Field()

desc = scrapy.Field()

然后,在spiders文件夹下新建,代码如下:

import scrapy.cmdline

from wikiDataScrapy.items import WikidatascrapyItem

import requests

from bs4 import BeautifulSoup

获取请求的500个网址,用requests+BeautifulSoup搞定

def get_urls():

url = “?title=Special:WhatLinksHere/Q5&limit=500&from=0”

请求头部

headers = {

‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36’}

发送HTTP请求

req = (url, headers=headers)

解析网页

soup = BeautifulSoup(, “lxml”)

找到name和Deion所在的记录

human_list = (id=‘mw-whatlinkshere-list’)(‘li’)

urls = []

获取网址

for human in human_list:

url = (‘a’)[‘href’]

urls.append(‘’ + url)

print(urls)

return urls

使用scrapy框架爬取

class bookSpider(scrapy.Spider):

name = ‘wikiScrapy’ # 爬虫名称

start_urls = get_urls() # 需要爬取的500个网址

def parse(self, response):

item = WikidatascrapyItem()

name and deion

item[‘name’] = (‘span.wikibase-title-label’).xpath(‘text()’).extract_first()

item[‘desc’] = (‘span.wikibase-deionview-text’).xpath(‘text()’).extract_first()

yield item

执行该爬虫,并转化为csv文件

scrapy.cmdline.execute([‘scrapy’, ‘crawl’, ‘wikiScrapy’, ‘-o’, ‘’, ‘-t’, ‘csv’])

输出结果如下(只包含最后的Scrapy信息总结部分):

{‘downloader/request_bytes’: 166187,

‘downloader/request_count’: 500,

‘downloader/request_method_count/GET’: 500,

‘downloader/response_bytes’: 18988798,

‘downloader/response_count’: 500,

‘downloader/response_status_count/200’: 500,

‘finish_reason’: ‘finished’,

‘finish_time’: datetime.datetime(2018, 10, 16, 9, 49, 15, 761487),

网上GPT CSDN一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化GPT CSDN的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!


原文地址1:https://blog.csdn.net/2401_84538429/article/details/138517332
参考资料:python中用turtle画一个圆形 https://blog.csdn.net/SXIAOYAN_/article/details/140061099

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值