欢迎来到今天的讨论,我们将探讨,python抓取网页数据并写入excel python爬虫技术抓取网站数据,一起探索吧!
最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可python技术开发高级证书。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份GPT CSDN的 Python GPT CSDN,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉PythonGPT CSDN学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
需要这份系统化GPT CSDN的朋友,可以戳这里获取
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
…
Antoine de Saint-Exupery , French writer and aviator
Michael Jackson , American singer, songwriter and dancer
并发方法,总共耗时:226.呵呵33
##################################################
使用多线程并发后的爬虫执行时间约为227秒,大概是一般方法的三分之一的时间,速度有了明显的提升啊!多线程在速度上有明显提升,但执行的网页顺序是无序的,在线程的切换上开销也比较大,线程越多,开销越大。
异步方法
异步方法在爬虫中是有效的速度提升手段,使用aiohttp可以异步地处理HTTP请求,使用asyncio可以实现异步IO,需要注意的是,aiohttp只支持3.5.3以后的Python版本。使用异步方法实现该爬虫的完整Python代码如下:
import requests
from bs4 import BeautifulSoup
import time
import aiohttp
import asyncio
开始时间
t1 = ()
print(‘#’ * 50)
url = “?title=Special:WhatLinksHere/Q5&limit=500&from=0”
请求头部
headers = {‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36’}
发送HTTP请求
req = (url, headers=headers)
解析网页
soup = BeautifulSoup(, “lxml”)
找到name和Deion所在的记录
human_list = (id=‘mw-whatlinkshere-list’)(‘li’)
urls = []
获取网址
for human in human_list:
url = (‘a’)[‘href’]
urls.append(‘’+url)
异步HTTP请求
async def fetch(session, url):
async with (url) as response:
return await ()
解析网页
async def parser(html):
利用BeautifulSoup将获取到的文本解析成HTML
soup = BeautifulSoup(html, “lxml”)
获取name和deion
name = (‘span’, class_=“wikibase-title-label”)
desc = (‘span’, class_=“wikibase-deionview-text”)
if name is not None and desc is not None:
print(‘%-40s,\t%s’%(, ))
处理网页,获取name和deion
async def download(url):
async with aiohttp.ClientSession() as session:
try:
html = await fetch(session, url)
await parser(html)
except Exception as err:
print(err)
利用asyncio模块进行异步IO处理
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(download(url)) for url in urls]
tasks = asyncio.gather(*tasks)
loop.run_until_complete(tasks)
t2 = () # 结束时间
print(‘使用异步,总共耗时:%s’ % (t2 - t1))
print(‘#’ * 50)
输出结果如下(省略中间的输出,以……代替):
##################################################
Frédéric Taddeï , French journalist and TV host
Gabriel Gonzáles Videla , Chilean politician
…
Denmark , sovereign state and Scandinavian country in northern Europe
Usain Bolt , Jamaican sprinter and soccer player
使用异步,总共耗时:126.9002583026886
##################################################
显然,异步方法使用了异步和并发两种提速方法,自然在速度有明显提升,大约为一般方法的六分之一。异步方法虽然效率高,但需要掌握异步编程,这需要学习一段时间。
如果有人觉得127秒的爬虫速度还是慢,可以尝试一下异步代码(与之前的异步代码的区别在于:仅仅使用了正则表达式代替BeautifulSoup来解析网页,以提取网页中的内容):
import requests
from bs4 import BeautifulSoup
import time
import aiohttp
import asyncio
import re
开始时间
t1 = ()
print(‘#’ * 50)
url = “?title=Special:WhatLinksHere/Q5&limit=500&from=0”
请求头部
headers = {
‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36’}
发送HTTP请求
req = (url, headers=headers)
解析网页
soup = BeautifulSoup(, “lxml”)
找到name和Deion所在的记录
human_list = (id=‘mw-whatlinkshere-list’)(‘li’)
urls = []
获取网址
for human in human_list:
url = (‘a’)[‘href’]
urls.append(‘’ + url)
异步HTTP请求
async def fetch(session, url):
async with (url) as response:
return await ()
解析网页
async def parser(html):
利用正则表达式解析网页
try:
name = re.findall(r’(.+?)', html)[0]
desc = re.findall(r’(.+?)', html)[0]
print(‘%-40s,\t%s’ % (name, desc))
except Exception as err:
pass
处理网页,获取name和deion
async def download(url):
async with aiohttp.ClientSession() as session:
try:
html = await fetch(session, url)
await parser(html)
except Exception as err:
print(err)
利用asyncio模块进行异步IO处理
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(download(url)) for url in urls]
tasks = asyncio.gather(*tasks)
loop.run_until_complete(tasks)
t2 = () # 结束时间
print(‘使用异步(正则表达式),总共耗时:%s’ % (t2 - t1))
print(‘#’ * 50)
输出的结果如下(省略中间的输出,以……代替):
##################################################
Dejen Gebremeskel , Ethiopian long-distance runner
Erik Kynard , American high jumper
…
Buzz Aldrin , American astronaut
Egon Krenz , former General Secretary of the Socialist Unity Party of East Germany
使用异步(正则表达式),总共耗时:16.521944999694824
##################################################
16.5秒,仅仅为一般方法的43分之一,速度如此之快,令人咋舌
爬虫框架Scrapy
最后,我们使用著名的Python爬虫框架Scrapy来解决这个爬虫。我们创建的爬虫项目为wikiDataScrapy,项目结构如下:
在中设置“ROBOTSTXT_OBEY = False”. 修改,代码如下:
-- coding: utf-8 --
import scrapy
class WikidatascrapyItem():
define the fields for your item here like:
name = scrapy.Field()
desc = scrapy.Field()
然后,在spiders文件夹下新建,代码如下:
import scrapy.cmdline
from wikiDataScrapy.items import WikidatascrapyItem
import requests
from bs4 import BeautifulSoup
获取请求的500个网址,用requests+BeautifulSoup搞定
def get_urls():
url = “?title=Special:WhatLinksHere/Q5&limit=500&from=0”
请求头部
headers = {
‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36’}
发送HTTP请求
req = (url, headers=headers)
解析网页
soup = BeautifulSoup(, “lxml”)
找到name和Deion所在的记录
human_list = (id=‘mw-whatlinkshere-list’)(‘li’)
urls = []
获取网址
for human in human_list:
url = (‘a’)[‘href’]
urls.append(‘’ + url)
print(urls)
return urls
使用scrapy框架爬取
class bookSpider(scrapy.Spider):
name = ‘wikiScrapy’ # 爬虫名称
start_urls = get_urls() # 需要爬取的500个网址
def parse(self, response):
item = WikidatascrapyItem()
name and deion
item[‘name’] = (‘span.wikibase-title-label’).xpath(‘text()’).extract_first()
item[‘desc’] = (‘span.wikibase-deionview-text’).xpath(‘text()’).extract_first()
yield item
执行该爬虫,并转化为csv文件
scrapy.cmdline.execute([‘scrapy’, ‘crawl’, ‘wikiScrapy’, ‘-o’, ‘’, ‘-t’, ‘csv’])
输出结果如下(只包含最后的Scrapy信息总结部分):
{‘downloader/request_bytes’: 166187,
‘downloader/request_count’: 500,
‘downloader/request_method_count/GET’: 500,
‘downloader/response_bytes’: 18988798,
‘downloader/response_count’: 500,
‘downloader/response_status_count/200’: 500,
‘finish_reason’: ‘finished’,
‘finish_time’: datetime.datetime(2018, 10, 16, 9, 49, 15, 761487),
网上GPT CSDN一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化GPT CSDN的朋友,可以戳这里获取
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
原文地址1:https://blog.csdn.net/2401_84538429/article/details/138517332
参考资料:python中用turtle画一个圆形 https://blog.csdn.net/SXIAOYAN_/article/details/140061099