题目描述
每天早上,约翰都要从他的家里步行去农场,他途中可能要经过其他的一些地方。我们把这些地方和路抽象成一张图,这张图里有N个点,共有M条边(每条边都是双向边),每条边都有一个长度,约翰的家在第1个点,农场在第N个点,两个点之间没有重复的边,并且这个图是一个连通图,每次约翰从家里到农场总会选一条最短的路径走。
但是约翰的奶牛们老是给约翰捣乱,奶牛们计划在其中某条路上放一些干草堆来阻碍约翰的行走,干草堆放在哪条路上,那条边的长度就相当于增加了一倍。现在,奶牛们想要知道如何选择一条边放干草堆,才能使约翰从家里到农场花费的路程增加最多。
输入
第一行是两个正整数N和M。
接下来M行,每行三个整数a,b,c表示点a到点b的距离是c。
输出
输出从家里到农场的最短路径最多会增加的距离。
样例输入
5 7
2 1 5
1 3 1
3 2 8
3 5 7
3 4 3
2 4 7
4 5 2
样例输出
2
数据范围限制
1<=N<=250,1<=M<=25000。
提示
【样例说明】
当奶牛们把干草堆放在3-4的边上时,3-4的边的长度相当于从3变到6,约翰的最短路径就变成了1-3-5,总共的距离等于1+7=8,比原来的最短路长度增加了2。
分析
这题很暴力,因为是“单源最短路径”,所以用SPFA。
先求出1~n的最短路,然后枚举每一条路作为放干草堆的地方。打擂台算出最大差值就是答案。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m,h,t,a[25001],b[25001],c,f[260][260],dis[260],k,ff,mx,v[100010],q[100010];
int spfa()
{
memset(v,0,sizeof(v));
memset(q,0,sizeof(q));
memset(dis,1,sizeof(dis));
int x;
dis[1]=0;
v[1]=1;
q[1]=1;
h=0;
t=1;
while(h<t)
{
h++;
x=q[h];
for(int i=1;i<=n;i++)
{
if(dis[x]+f[x][i]<dis[i]&&f[x][i]!=0)
{
dis[i]=dis[x]+f[x][i];//松弛
if(!v[i])
{
t++;
v[i]=1;
q[t]=i;
}
}
}
v[x]=0;
}
return dis[n];
}
int main()
{
freopen("rblock.in","r",stdin);
freopen("rblock.out","w",stdout);
cin>>n>>m;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a[i],&b[i],&c);
f[a[i]][b[i]]=c;
f[b[i]][a[i]]=c;
}
k=spfa();
for(int i=1;i<=m;i++)
{
f[a[i]][b[i]]*=2;
f[b[i]][a[i]]*=2;
ff=spfa();
f[a[i]][b[i]]/=2;
f[b[i]][a[i]]/=2;
if(ff-k>mx) mx=ff-k;
}
printf("%d",mx);
fclose(stdin);
fclose(stdout);
return 0;
}