分析
做题的问题是一直卡在几个看似复杂的操作上,然后复杂度就很不理想。
类比环形DP中的“倍长”处理,这里可以直接复制成2n*2n的矩阵,就可以涵盖所有的循环移动情况。
然后就可以统计1的个数了,每个小矩阵中1的个数是一定的,只需要递推求出斜对角上前 i i i 个点1的总数就可以达到 n 3 n^3 n3 ,然后加上前缀和就到n方了。
最后枚举统计的时候只需要枚举左上方n*n的部分为左上角就可以了,不用重复。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int t,n,a[4010][4010],s[4010][4010],sum;
int main()
{
scanf("%d",&t);
while(t--)
{
memset(s,0,sizeof(s));
sum=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%1d",&a[i][j]);
if(a[i][j]==1) sum++;
a[i][j+n]=a[i+n][j]=a[i+n][j+n]=a[i][j];
}
}
for(int i=1;i<=2*n;i++)
{
for(int j=1;j<=2*n;j++)
{
s[i][j]=s[i-1][j-1]+a[i][j];
}
}
int ans=2147483640;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
ans=min(ans,sum-2*(s[i+n-1][j+n-1]-s[i-1][j-1])+n);
}
}
printf("%d\n",ans);
}
return 0;
}