本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺
术细胞。普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树
个数。更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快
速算出其生成树个数。小W不知道计算姬算的对不对,你能帮助他吗?
Input
仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}
1 <= n,m,p <= 10^18
Output
仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。
Sample Input
2 3 7
Sample Output
5
正解:$Matrix-Tree$定理
解题报告:
学了$Matrix-Tree$之后,这道题推推式子就可以辣。
先用小数据建图,再建出基尔霍夫矩阵,高斯消元,对答案打个表(不要取模!不然规律就GG了...)看看规律,
发现答案就是$n^{m-1} * m^{n-1}$,用快速幂$+$快速乘法就可以了。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
LL n,m,p,ans;
inline LL getint(){
LL w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}
inline LL cheng(LL x,LL y){
LL r=0;
while(y>0) {
if(y&1) r+=x,r%=p;
x+=x; x%=p;
y>>=1;
}
return r;
}
inline LL fast_pow(LL x,LL y){
LL r=1;
while(y>0) {
if(y&1) r=cheng(r,x);
x=cheng(x,x);
y>>=1;
}
return r;
}
inline void work(){
n=getint(); m=getint(); p=getint();
ans=cheng(fast_pow(n,m-1),fast_pow(m,n-1));
cout<<ans;
}
int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。