[BZOJ4766]-文艺计算姬-矩阵树定理(或Prufer)

说在前面

并没有什么想说的,但是要保持格式=w=


题目

BZOJ4766传送门

题目大意

<n,m> < n , m > <script type="math/tex" id="MathJax-Element-56"> </script>的完全二分图生成树计数,对 P P 取模
n,m,P1018

输入输出格式

输入格式:
输入三个数字, n,m,P n , m , P ,含义如题

输出格式:
输出一个整数表示答案


解法

用Matrix-tree定理,把基尔霍夫矩阵搞出来,然后直接手动高消即可
贴两篇题解:CRZbulabulasengxian

另外,还可以用Prufer编码证明此题公式
显然最后两侧会各留下一个点,所以一边会被加入 n1 n − 1 次,另一边会被加入 m1 m − 1 次。
考虑一下,如果同侧序列的内部顺序已经确定,那么两侧的相对位置随之确定(因为解码Prufer的时候需要保证同侧无边,所以随着解码的进行,相对位置就被确定下来了,可以手动模拟几组数据感受一下)
所以,只需要分别确定内部顺序,再把内部顺序方案数相乘即可,显然答案是 nm1mn1 n m − 1 m n − 1


下面是代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

long long N , M , P ;
long long s_mul( long long x , long long y ){
    long long rt = 0 ;
    while( y ){
        if( y&1 ) rt = ( rt + x )%P ;
        x = ( x + x )%P , y >>= 1 ;
    } return rt ;
}

long long s_pow( long long x , long long y ){
    long long rt = 1 ;
    while( y ){
        if( y&1 ) rt = s_mul( rt , x ) ;
        x = s_mul( x , x ) , y >>= 1 ;
    } return rt ;
}

int main(){
    scanf( "%lld%lld%lld" , &N , &M , &P ) ;
    printf( "%lld" , s_mul( s_pow( N%P , M - 1 ) , s_pow( M%P , N - 1 ) ) ) ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值