题目链接:Click here~~
题意:
给你一个 n (10^12),让你表示成 n = k + k^2 + …… + k^r 的形式(k >= 2),找出 k*r 最小的解。
解题思路:
稍加分析可知,r 最大是 log2(10^12) = 39.xxxx,令 F(k) = k + k^2 + …… + k^r ,对于每一个 r,这个函数是单调递增的。
于是可以二分查找 k 的值并验证他是否存在。二分区间为( 2 , logr(n) )。
则复杂度大约O( log(n)*log(n) )。可过。
PS:
1、二分区间的上界最好精确些,否则会超 long long。
2、如果可以的话,当pow函数为整数,最好自己写,double有误差。
#include <math.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
typedef long long LL;
int ansR;
LL ansK;
LL mypow(int a,int n)
{
LL ans = 1,tmp = a;
while(n)
{
if(n&1)
ans *= tmp;
tmp *= tmp;
n >>= 1;
}
return ans;
}
LL PreSum(int k,int r)
{
return (mypow(k,r+1)-k)/(k-1);
}
int erfen(LL n,int rr)
{
int l = 2,r = pow(n,1.0/rr);
while(l < r)
{
int mid = (l+r)/2;
if(PreSum(mid,rr) > n)
r = mid;
else
l = mid+1;
}
return PreSum(l,rr)==n ? l : -1;
}
void solve(LL n,int r)
{
int tmp = erfen(n,r);
if(tmp!=-1 && tmp*r<ansK*ansR)
ansR = r , ansK = tmp;
}
int main()
{
LL n;
while(~scanf("%lld",&n))
{
ansR = 1 , ansK = n-1;
for(int r=2;mypow(2,r)<n;r++)
{
solve(n,r);
solve(n-1,r);
}
printf("%d %lld\n",ansR,ansK);
}
return 0;
}