题目描述
给出一个N个顶点M条边的无向无权图,顶点编号为1-N。问从顶点1开始,到其他每个点的最短路有几条。
输入格式
第一行包含2个正整数N,M,为图的顶点数与边数。
接下来M行,每行2个正整数x,y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。
输出格式
共N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出 ans mod 100003ans后的结果即可。如果无法到达顶点i则输出0。
输入输出样例
输入 #1
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出 #1
1
1
1
2
4
分析&说明:
这道题先先跑一遍spfa,得到源点到所有点的最短路长度。
再跑一遍记忆化搜索,遍历最短路图,得到答案。
很简单,不需要在spfa里统计数量。
附上CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int n,m,head[1000005],to[4000005],next[4000005],k,dis[1000005],ans[1000005];
bool book[1000005];
queue<int> que; //spfa队列
void add(int u,int v){
to[k]=v;
next[k]=head[u];
head[u]=k++;
//邻接表
}
int dfs(int u)
{
if(ans[u]) return ans[u];
for(int i=head[u];i!=-1;i=next[i])
if(dis[u]-1==dis[to[i]])
ans[u]=(ans[u]+dfs(to[i]))%100003;//题目要求%
return ans[u];
//记忆化搜索
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
head[i]=-1;
dis[i]=0x7fffffff; //初始化
}
for(int i=1;i<=m;i++)
{
int x,y;
cin>>x>>y;
add(x,y),add(y,x);
//建表 无向图要双向建
}
dis[1]=0;
que.push(1);book[1]=1;
while(!que.empty())
{ //spfa部分求最短路
int f=que.front();que.pop();book[f]=0;
for(int i=head[f];i!=-1;i=next[i])
if(dis[f]+1<dis[to[i]])
{
dis[to[i]]=dis[f]+1;
if(!book[to[i]])
{
que.push(to[i]);
book[to[i]]=1;
}
}
}
ans[1]=1;
for(int i=1;i<=n;i++)
//每个点记忆化搜索
cout<<dfs(i)<<endl;
return 0;
}