烽火传递
Time Limit:10000MS Memory Limit:512000K
Case Time Limit:1000MS
Description
烽火台又称烽燧,是重要的军事防御设施,一般建在险要或交通要道上。一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息;夜晚燃烧干柴,以火光传递军情,在某两座城市之间有 n 个烽火台,每个烽火台发出信号都有一定代价。为了使情报准确地传递,在连续 m 个烽火台中至少要有一个发出信号。请计算总共最少花费多少代价,才能使敌军来袭之时,情报能在这两座城市之间准确传递。
Input
第一行:两个整数 N,M。其中N表示烽火台的个数, M 表示在连续 m 个烽火台中至少要有一个发出信号。接下来 N 行,每行一个数 Wi,表示第i个烽火台发出信号所需代价。
Output
一行,表示答案。
Sample Input
5 3
1
2
5
6
2
Sample Output
4
分析:
得到转移方程:
f[i]=min(f[i],f[j]+a[i]);
后
我们就需要考虑单调队列优化
STEP:
- 维护队首
- 在队尾插入(每插入一个就要从队尾开始往前去除冗杂状态)
- 取出需要的最优解(队列头的值即是)
- 借助最优解,得到目前所求的最优解(通常此处插入DP方程)
CODE:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int m,n,a[100001],f[100001],q[100001],ans=2147483647,head=1,tail=0;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
while(head<=tail&&f[i-1]<f[q[tail]]) tail--; //比较价值弹出队尾
q[++tail]=i-1; //植入f[i-1]的下标
while(head<=tail&&q[head]<i-m) head++;
f[i]=f[q[head]]+a[i];//DP
}
for(int i=n;i>n-m;i--){
ans=min(f[i],ans); //求最终答案
}
cout<<ans;
return 0;
}