1138.序列
时间限制:1000MS
内存限制:128000KB
题目描述
一个长度为k的整数序列b1,b2,…,bk(1≤b1≤b2≤…≤bk≤N)称为“好序列”当且仅当后一个数是前一个数的倍数,即bi+1是bi的倍数对任意的i(1≤i≤k-1)成立。
给定N和k,请算出有多少个长度为k的“好序列”,答案对1000000007取模。
输入
输入共1行,包含2个用空格隔开的整数N和k。
输出
输出共1行,包含一个整数,表示长度为k的“好序列”的个数对1000000007取模后的结果。
输入样例
3 2
输出样例
5
分析:
D
P
DP
DP
设
p
p
p为
j
j
j的约数
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示前
i
i
i为确定且末位为
j
j
j
得动态能量转移方程:
f
[
i
+
1
]
[
j
∗
p
]
=
(
f
[
i
+
1
]
[
j
∗
p
]
+
f
[
i
]
[
j
]
)
f[i+1][j*p]=(f[i+1][j*p]+f[i][j])
f[i+1][j∗p]=(f[i+1][j∗p]+f[i][j])%
1000000007
1000000007
1000000007
读好题就好了
CODE:
#include<iostream>
#include<cstdio>
#include<algorithm>
#pragma GCC optimize(2)
using namespace std;
const int N=2005;
int n,k,f[N][N],ans;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
f[1][i]=1;
for(register int i=1;i<=k;i++)
for(register int j=1;j<=n;j++)
for(register int p=1;p<=n/j;p++) //约数
f[i+1][j*p]=(f[i+1][j*p]+f[i][j])%1000000007; //转移
for(int i=1;i<=n;i++)
ans=(ans+f[k][i])%1000000007; //统计
printf("%d",ans);
return 0;
}