目录:
T1:棋盘变换
T2:蛋糕店
T3:相似度
T4:Sam数
众所周知 T1是最简单的题
T1:棋盘变换
【问题描述】
小 G 在一个 n*m 的棋盘上随意放上了一些黑色的棋子,然后又在剩下所有没有放棋子的格子里放上了白色的棋子。现在小 G 想知道他是否能通过以下两种变换将整个棋盘上的棋子全部变成白色。
变幻 1:选择一列,将这一列的棋子全部反色,即黑变白,白变黑。
变幻 2:选择一行,将这一行的棋子全部反色。
如果能将整个棋盘上的棋子全部变成白色,则输出最少需要的变幻次数。否则输出经过若干次变幻后,棋盘上最少的黑子个数。
【输入格式】
第一行两个正整数 n,m,含义见题面。
接下里 n 行,每行 m 个字符,‘0’表示白子,‘1’表示黑子。
【输出格式】
一行一个整数 ans,含义见题面。
【样例输入】
3 4
0111
0111
1000
【样例输出】
3
【数据规模和约定】
对于 30%的数据,1 ≤ n ,m ≤ 9。
对于 60%的数据,1 ≤ n ,m ≤ 15。
对于 100%的数据,1 ≤ n ≤ 16,1 ≤ m ≤ 20。
分析:
这个数据还是比较氵的 可以直接暴搜
枚举列或者行
当然 n < = 16 n<=16 n<=16 也可以考虑状压 D P DP DP
CODE:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,a[21][21],ans=9999999,tot=9999999;
char x;
void dfs(int dep,int step)
{
if(dep>n)
{
int qwq=0;
for(int j=1;j<=m;j++) //枚举列
{
int awa=0;
for(int i=1;i<=n;i++) //暴搜
awa+=a[i][j];
if(awa>n-awa) step++;
qwq+=min(awa,n-awa); //翻不了的黑
}
if(qwq<ans) ans=qwq; //最少
if(!qwq) tot=min(tot,step); //可以搜完,最小步数
return;
}
dfs(dep+1,step); //不翻
for(int i=1;i<=m;i++)
a[dep][i]=(a[dep][i]+1)%2;
dfs(dep+1,step+1); //翻
for(int i=1;i<=m;i++)
a[dep][i]=(a[dep][i]+1)%2;
}
int main(){
freopen("chess.in","r",stdin);
freopen("chess.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>x;
a[i][j]=x-'0'; //转换数字
}
dfs(1,0);
if(ans>0) printf("%d",ans);
else printf("%d",tot);
return 0;
}
T2:蛋糕店
【问题描述】
最近小 G 新开了一家蛋糕店。开业第一天,一共来个 n 位顾客。由于小 G
非常懒,他每次只会接待一位顾客。每个顾客都想尽快的买到蛋糕,所以没有第
一个买到蛋糕的顾客都会有一个愤怒值。最终排在第 i 个位置的顾客 x 的愤怒值
为 i*a[x]。小 G 想要所有顾客的愤怒值之和最小。求最小的愤怒值之和。
【输入格式】
第一行为一个整数 n,表示顾客数。
第二行输入 n 个整数 a[1]…a[n] ,含义见题面
【输出格式】
一行一个整数 ans,表示最小的愤怒值之和。
【样例输入】
5
8 5 8 4 6
【样例输出】
51
【样例解释】
A n s